

Supply Chain Security Workshop

April 28 & 29, 2021

Amkor Automotive Unit Level Traceability

Dr. Ajay Sattu | Automotive Product Marketing April 2021

Outline

- 1 Introduction
- 2 Industry 4.0
- 3 Motivation for Traceability
- 4 Unit Level Traceability (ULT)
- 5 Amkor's Value Proposition

Amkor by the Numbers

End Markets

Automotive Communications

Industrial

Computing

Consumer

*2020 results

Amkor End Markets

Communications

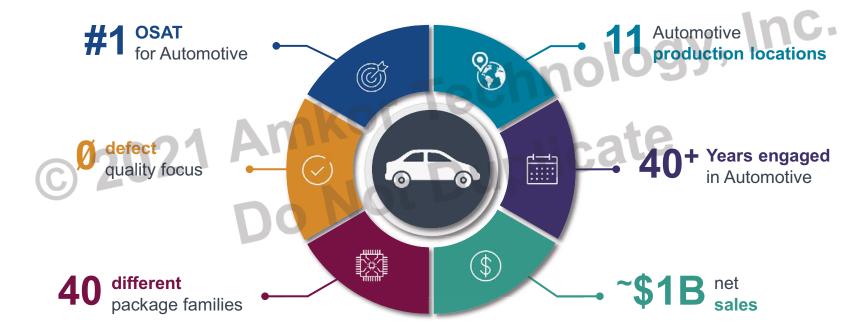
Mobile Connected Devices Streaming

Consumer

Connected Home Wearables A/R Gaming

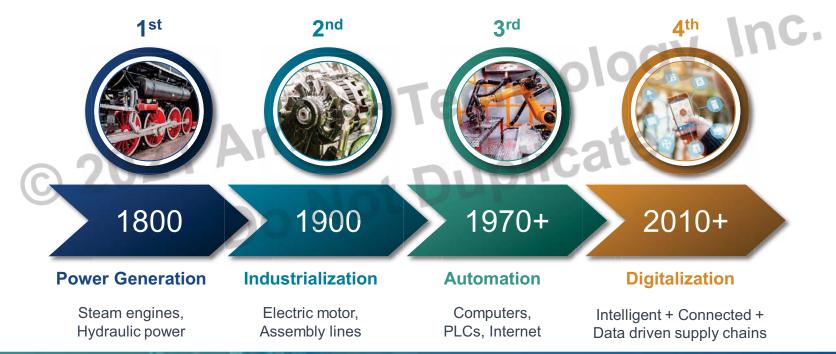
Automotive & Industrial

ADAS Infotainment IoT



Computing

HPC Al Data Center Cloud/Edge


Amkor Automotive by the Numbers

What is Industry 4.0?

4th Industrial Revolution

Eight Pillars of Industry 4.0

14.0 Framework for Amkor

		Pillars	Mechanisms @ Amkor	
	Automated	1. Autonomous Robots/Machines	Fully autonomous equipment Handsfree material handling – transport, loading, unloading, auto packing Paperless manufacturing processes	
C		2. Industrial IoT	eCIM (SECS/GEM or Raspberry Pi) controlled equipment loT controlled factory environment (air, gases, chemicals, electricity)	
		3. Universal System Integration	 6. eCIM, MES, ERP and all peripheral execution systems integrated 7. End-to-end visibility and traceability (ULT) 8. Handsfree data entry (mobile scanners, RFID) 9. Handsfree transactions/data transfer (Astera, RPA) 10. B2B integration with customers and suppliers for near real-time visibility 	
	Jent	4. AI/AR	11. AI ML @ AOI12. AI ML for visual inspection and other operations	
	Intelligent	5. Big Data Analytics	 13. SPC, APC, FDC – real-time monitoring, analysis and control for select equipment 14. Big data with advanced analytics for OEE – Spotfire, SAS, ML Big Query 15. Predictive maintenance capability for major bottleneck equipment 	
	a# a	6. Cloud Computing	16. Cloud Computing – SaaS, IaaS, PaaS as enablers	
	Secure & Scalable	7. Cybersecurity	17. Cybersecurity – infrastructure protection from hacks and viruses18. IP protection – for Amkor & customer IP	
		8. Simulation	19. Simul8 models with trained IE for active floor control/CapEx20. Automated planning, scheduling & dispatching	

How We Value I4.0 Projects

Continuous Improvement, Measured Regularly

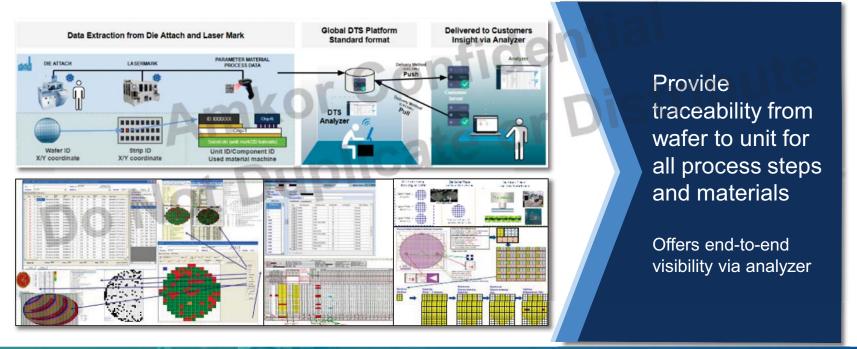
Productivi Employee efficiency

OKPI Cycle 1.

Speed and quality of decision making

Time saved in engineering data analysis and in-line decision making

Asset utilization Utilization of assets for productive use



Cost Competitive pricing

End-to-End Visibility and Traceability (ULT)

Mission Critical Safety Systems

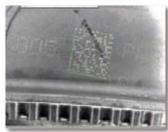
Lane Departure

Anti-lock Braking

Adaptive Cruise

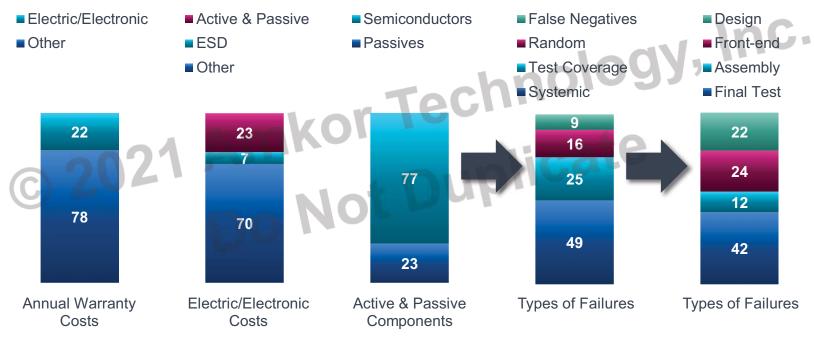
Traction Control

Complex Electronic Components


- ► High-speed processors
- Memory

- Controllers
- Sensors

Automotive Traceability


- Direct part marking on mechanical or electronics components
 - > 1D or 2D barcodes or RFID
- Traceability evolved from defensive mindset of 'minimizing recalls' to offensive posture of 'compliance'
- TREAD act requires reporting to NHTSA on safety excursions
- ► SEMI Collaborative Alliance for Semiconductor Test (CAST) is working on standardization
 - > Traceability of devices, including die, leadframe, epoxy, bond wires and PCB

Annual Automotive Warranty Costs Breakdown

Source: Data presented by ELES Semiconductor at Automotive Electronics Reliability Workshop, courtesy of Semiconductor Management at BMW Group

Case for Unit Level Traceability (ULT)

- ► Reputation loss and strained relationships in supply chain
- ► Automotive OEMs require an 8D in <10 days if field, 0 km or 0h failures occur that are safety related
- ▶ Unit level traceability can help
 - Prevent further failures
 - Determine root cause and commonality
- ▶ Process improvement tool for Amkor

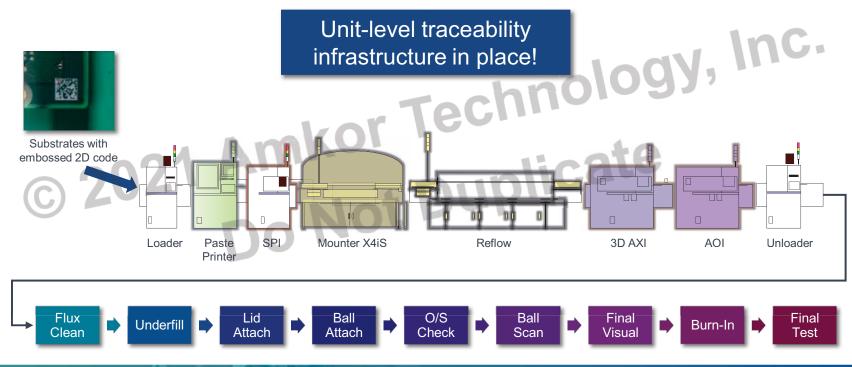
What is Unit Level Traceability (ULT)?

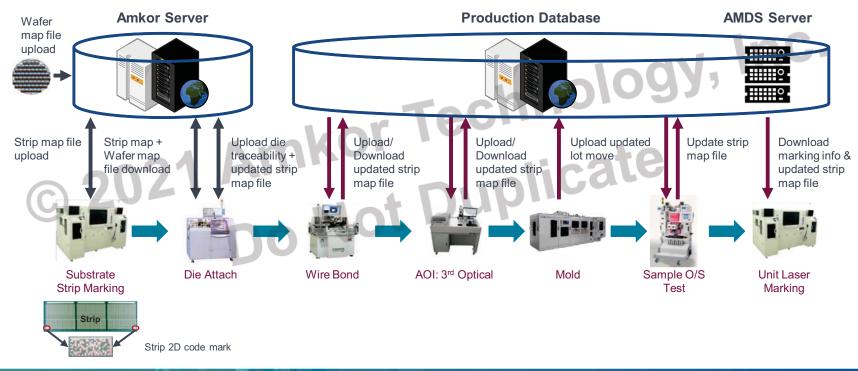
- Ability to collect and report, through marking (2D) barcode), key device data elements
 - ▷ Die information wafer ID, XY position on wafer
 - Substrate or leadframe strip information substrate ID, XY position on strip
 - ▶ Equipment used, process time, etc.
- Service can apply to any package family, based on customer request
 - Note: Not all lines will have same capability
- ► Amkor's traceability services include data collection and transmission

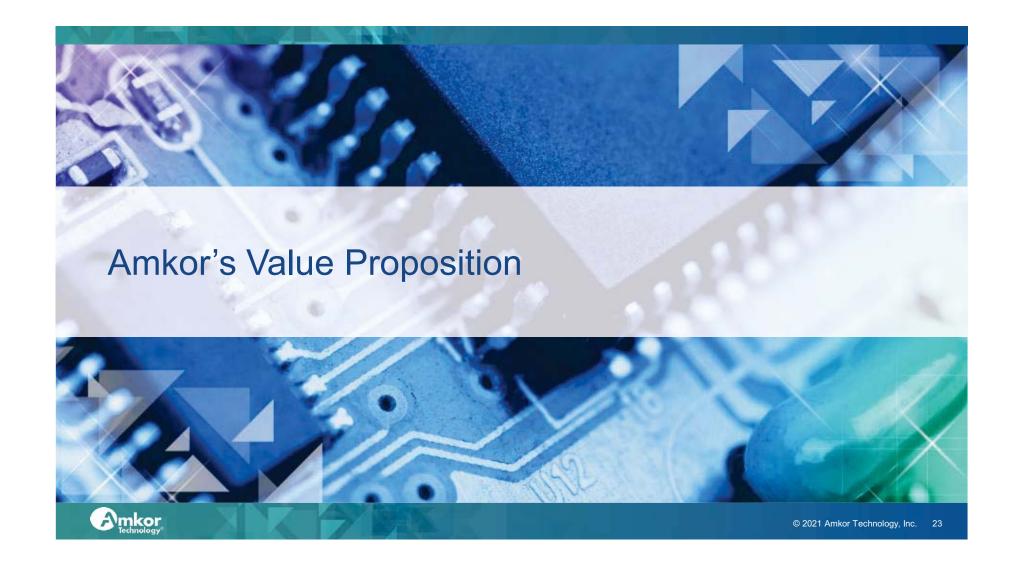
Use Case 1 – Detecting Failure Commonality

	Die		Substrate	
- la	Wafer ID	XY Position	Substrate ID	XY Position
Unit 1	12345	6,3	98765	1,1

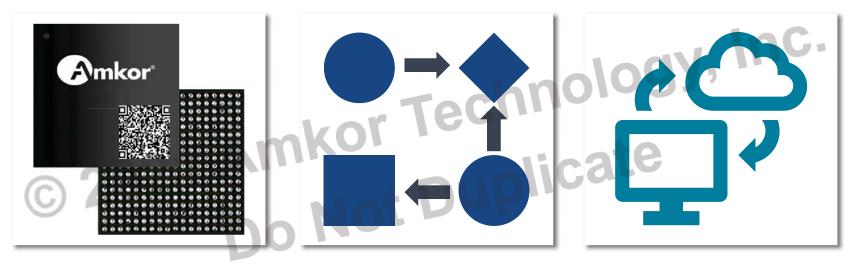
	Die		Substrate	
	Wafer ID	XY Position	Substrate ID	XY Position
Unit 2	12345	12,7	78251	5,2


Use Case 2 – ULT Without 2D Mark


	ASIC Die		MEMS Die		Substrate	
	Wafer ID	XY Position	Wafer	XY Position	Substrate ID	XY Position
Unit 1	12345	6,3	678910	4,2	98765	1,1
Unit 2	12345	7,3	678910	5,2	98765	2,1


- ASICs have capability to be read electrically, however MEMS may not be
- Amkor provides ASIC, MEMS and substrate pairing information via shared database
- ASIC die is read electrically; corresponding MEMS and substrate information can be pulled from database

Automotive SiP Line Configuration and Flow



Unit Level Traceability System (ULT) Flow

High Level Customer Expectation

Unique unit 2D barcode

Process, material and equipment history at every step

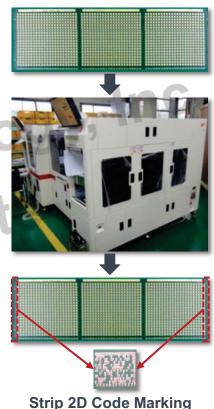
Real-time retrieval of information

ULT Standard 44 Data Elements

Lot Details				
Factory ID Site ID				
Machine Name				
Strip Out DateTime				
Amkor ID Sub ID				
Customer Lot Number DCC dode				
Operation Code				
Source Device Target Device				
Date Code Trade Code				
PDL				
Assy Lot# I Lot Type				
Customer #/Name				

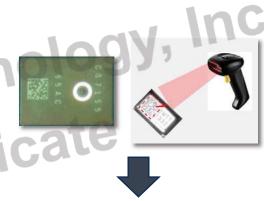
Die Attach/Chip Attach/WLFO
Wafer ID
Starting_Point
Origin Location
Wafer Flat Notch
Wafer X Wafer Y
Wafer Bin Code
Substrate ID
Substrate X Substrate Y
Substrate Bin Code
Die Bin Tracking

Amkor ULT Capability Catalog


Dunnan	Localinamo	Laminate		
Process	Leadframe	Unit	Strip	
Common	Device #, Assembly lot #, Process time, Customer lot #, Lot type, Amkor ID, PDL, Customer #/name			
Die Bin (Non-std process)	N/A	Die bin tracking		
ID Marker	Engrave 2D ID on frame	Engrave 2D ID on unit	Engrave 2D ID on strip	
C/M	N/A	Supplier lot # , Manufacturing date		
D/A, C/A	Wafer ID, Frame ID, X/Y position, Wafer map, Component ID, Die ID	Wafer ID, PCB ID, Wafer map, Component ID, Die ID	Wafer ID, Strip ID, X/Y Position, Wafer map, Component ID, Die ID	
M/K	Engrave 2D on unit (1 except for laminate lid)			
Other Process	DO.	Unit ID, Package dimension		
Format	CSV/XML/JSON Format			
Storage B2B Under customer FTP				
Retention	5 y	ears (Commercial), 15 years (Automoti	ve)	

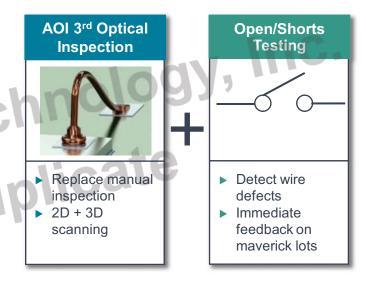
Capable but need investment for capacity. Expandable need investment to cover new customer/capacity.

2D Strip Marking

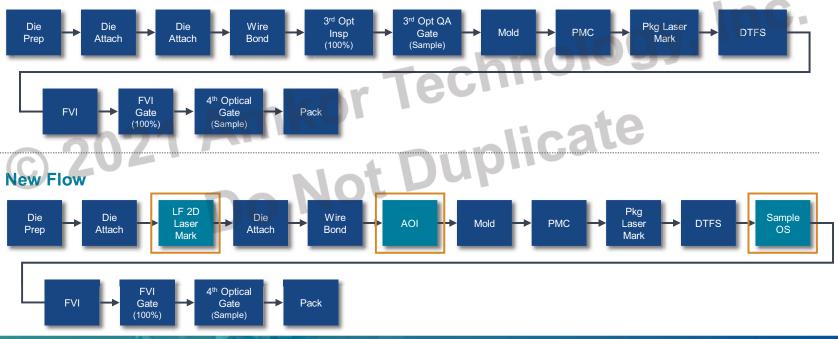

- 2D code on the leadframe or substrate strip
- Prevents strip-level product mixing post-mold
 - Logging of process failures at each assembly station
 - Generate individual output map for each lot per assembly process
 - Integrate 3rd Optical AOI and sample OS with strip and unit/die traceability
 - Automate unit rejection to improve lot handling
 - Improved data analytics
- Strip mapping of defects found at AOI and OS
- Being implemented at ATP for automotive leadframe products

Die Traceability

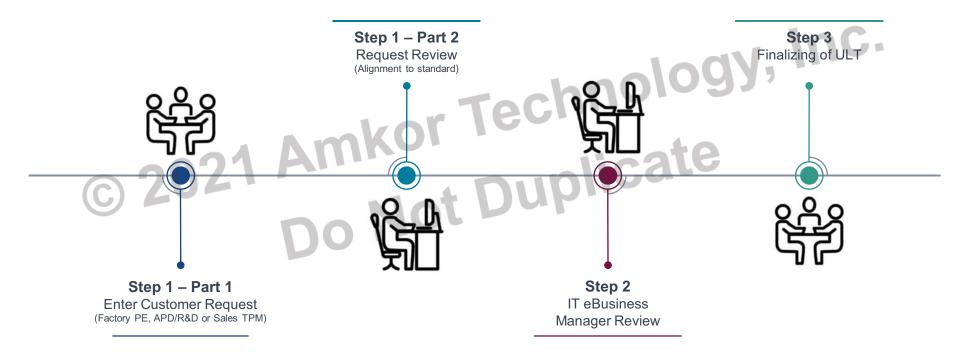
- ▶ 2D code on the unit
- ► Track location of unit on wafer and strip
- ► Access to data for engineering problem solving or unit failures
 - Lot transaction history, BOM, yield and defect breakdown
- Capability exists today for certain products
 - MEMS dual die products


Data analytics for engineering problem solving

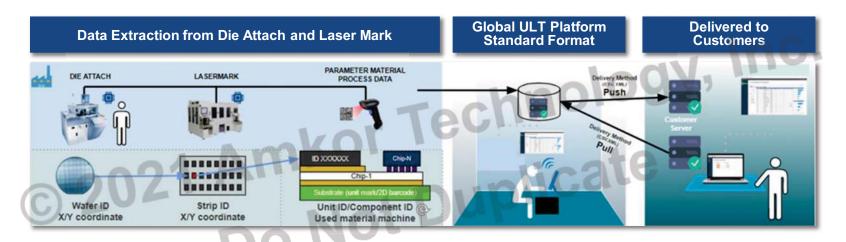
- 1. Strip map and wafer map/die location
- 2. eCIM Data (transaction history)
- Bill of Materials
- Yield and defect breakdown
- 5. eSPC and eStandroll


AOI + Sampling O/S

- ► AOI replaces 100% manual 3rd optical inspection for automotive customers
- Provide fast feedback on Maverick lots
 - the average
- OS Sampling to catch wirebond defects after AOI
 - ▶ AQL 0.1 or 125 units/lot (lot size of 3.5k~10ku)



Assembly Process Flow Comparison


Current Flow

How to Request ULT Service

IT Global Data Extraction Platform

- ▶ System developed to collect and report data
- ► Requests entered by sales or factory

Thank you sponsors!

ADVANTEST®

Amkor's Differentiators

Technology

Advanced Packaging Leadership Engineering Services Broad Portfolio

Quality

QualityFIRST Culture Execution Automation

Service

Design & Test Through Drop Ship
Manufacturing Footprint
Local Sales & Support

Global Companies Rate Advantest THE BEST ATE Company 2020

Advantest receives highest ratings from customers in annual VLSIresearch Customer Satisfaction Survey.

Advantest received an overall score of 9.5 out of 10, with highest ratings in categories of:

Technical Leadership – Partnership –
Uptime – Commitment – Trust in Supplier –
Quality of Results – Product Performance –
Recommended Supplier

"Year-after-year the company has delivered on its promise of technological excellence and it remains clear that Advantest keeps their customers' successes central to their strategy. Congratulations on celebrating 32 years of recognition for outstanding customer satisfaction."

— Risto Puhakka, President VLSIresearch

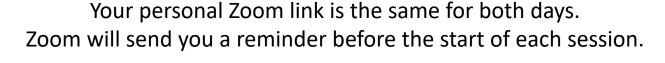
Technical Program Committee (TPC)

Ivor BarberAdvanced Micro Devices

Jeff DemminKeysight Technologies

Ira FeldmanFeldman Engineering

Virtual Event Schedule


Join us for two online sessions

Wednesday April 28, 2021

Thursday April 29, 2021

8:00 - 11:00 am PDT

8:00 - 11:00 am PDT

Speakers April 28

Saverio Fazzari
Booz Allen Hamilton

Supply Chain Challenges for Defense Systems

Sridhar Swamy & Akash Malhotra
Advanced Micro Devices

Securing Supply Chain

Nader Sehatbakhsh
University of California
Los Angeles (UCLA)
Hardware and
Supply Chain Security
in the era of Advanced
Heterogenous Integration

Michael Azarian
University of Maryland

Hardware Trojans and
Counterfeit
Microelectronics:
Detection and Diagnosis

Speakers April 29

Intel
Identifying Supply Chain Threats –
An Honest Assessment

Ajay Sattu

Amkor Technology, Inc.

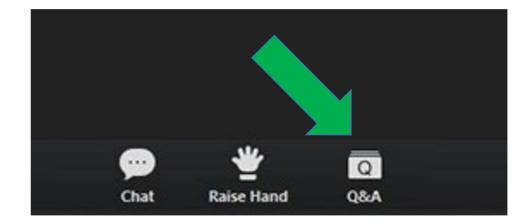
Automotive Semiconductor Unit Level

Traceability

Navid Asadi
University of Florida
Physical Assurance and Inspection of
Electronics

Reminders

Slides & Videos will be posted next week



supply-chain-security-2021/

http://events.meptec.org/ youtube.com/MEPTECpresents

Please use the Q&A window for your questions

Speakers April 29

Intel
Identifying Supply Chain Threats –
An Honest Assessment

Ajay Sattu

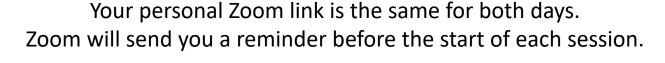
Amkor Technology, Inc.

Automotive Semiconductor Unit Level

Traceability

Navid Asadi
University of Florida
Physical Assurance and Inspection of
Electronics

Virtual Event Schedule


Join us for two online sessions

Wednesday April 28, 2021

Thursday April 29, 2021

8:00 - 11:00 am PDT

8:00 - 11:00 am PDT

Thank you sponsors!

ADVANTEST®

Amkor's Differentiators

Technology

Advanced Packaging Leadership Engineering Services Broad Portfolio

Quality

QualityFIRST Culture Execution Automation

Service

Design & Test Through Drop Ship
Manufacturing Footprint
Local Sales & Support

Global Companies Rate Advantest THE BEST ATE Company 2020

Advantest receives highest ratings from customers in annual VLSIresearch Customer Satisfaction Survey.

Advantest received an overall score of 9.5 out of 10, with highest ratings in categories of:

Technical Leadership – Partnership –
Uptime – Commitment – Trust in Supplier –
Quality of Results – Product Performance –
Recommended Supplier

"Year-after-year the company has delivered on its promise of technological excellence and it remains clear that Advantest keeps their customers' successes central to their strategy. Congratulations on celebrating 32 years of recognition for outstanding customer satisfaction."

— Risto Puhakka, President VLSIresearch

COPYRIGHT NOTICE

This multimedia file is copyright © 2021 by MEPTEC. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

The content of this presentation is the work and opinion of the author(s) and is reproduced here as presented at the **Supply Chain Security Workshop** (April 28 & 29, 2021).

The MEPTEC logo and 'MEPTEC' are trademarks of MEPTEC.

www.meptec.org

COPYRIGHT NOTICE

This presentation in this publication was presented at the **Supply Chain Security Workshop** (April 28 & 29, 2021). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

