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Chiplets are a critical building block in heterogenous integration: o |

 Electronic (Passive/Active)/photonic/MEMS/Sensor devices
 Digital; Analog; Logic; Memory; Power; RF
J System, Package (Chiplets) and Wafer levels, including Interconnects and Substrates

1 2.5D and 3D Packaging technologies
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Chiplet architectures bring unique reliability issues @
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Monolithic Modular
SoC Chiplets ~ _ .

Core Core

Core Core

Core Core

https://www.hardwaretimes.com/difference-between-intel-and-amd-ryzen-processors-chiplet-vs-monolithic/

Chiplet-Based Systems: Convergence of Semiconductor & Packaging (Disaggregation and Re-aggregation)
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Multi-physics
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Approach for reliable chiplet architectures s

INTEGRATION ROADMAP

: Reliability Assurance Activities
:"; Hazard Rate Curve Failure Distribution
§ .EE (Bathtub Curve)
5 | f
5 4
£
i
o 3
: |5
s o Reliability Life Cycle Manufacturing
28 Targets Conditions Reliability for Reliability
130nm  90nm  65nm  45nm  32om  22nm [4nm  [Onm
Mecre Mocre : miniaturization Sou.rce: Yole 2.5D/3D
. Business Update 2015
Multi-scale I'Ennwlelf:lge Product Health Supply chain
. . . based Testing for .
Convergence of Semiconductor and Packaging Industries Qualification Management Integration

Heterogeneous chiplets:
* technology (IC-node, photonics, MEMS, sensors) Reliability of multi-physics/multi-scale HI systems

e circuit type (DRAM, Serdes and logic, photonics, power, RF)  requires holistic cradle-to-grave methodology
* packaging (substrate, interposer and interconnect method)

cahe Center for Advanced Life Cycle Engineering 4 @ UNIVERSITY OF
https://calce.umd.edu  Copyright © 2021 CALCE MARYLAND



Chiplet reliability X

Prognostics and Health Management Fusion of bottom-up physics W s

Data Acquisition:
Condition Monitoring

and top-down Al approaches

Stress monitoring

Decision Support: Data Processing:

Healing Actions De-noising,
Deep Learning v Filtering
Feedback q q
Al-based Degradation Analysis
Condition Monitoring Machine Learning, Deep Learning
Sensors Feature Extraction
Prognostics: s Anomaly Detection: Design/ Material/ Process Unit to unit variation Data_ana]ytjcs Anomaly Detection
Remaining Useful b Feature Discovery variability (material, geometry, : :
Life Assessment s Machine Learnin Use / Accelerated Test mig) Lzl e DI mrrsies
8 condition variability “Micro Defects” X
X — Fusion
Diagnostics: .
Root-cause Reliabilit Prognostics
Assessment Stress Strength . e 1401 y Remaining
: : : Augin Dol b Useful Life
Degradation and Failure Mechanisms o _
| Fraction Failing - A ‘Reliability’ Figure of Merit - —— (RUL)
. geqe .\
/ - | ‘ Life Consumption I’ Reliability Physics | RP-based
Overstress Mechanisms Wearout Mechanisms Monitoring : (RP) Models Damage
AF | .
. Yield, Fracture, Usage Sensors I Accum“latlon
| Mec}lan]cal e deadesion Stress driven diffusion Canarles ExpeCted Fumre I EStimation
Thermal voiding (SDDV) \ Use Conditions !

Glass transition (T,)
Phase transition

-—— o = ==

e 1 hermal

Dielectric breakdown,
Electrical
Electrostatic discharge,

ma L lectrical

Second breakdown

B Radiation [ s o]
B Chemical I S
. Intermetallic Growth,

Radiation embrittlement,
Charge trapping in oxides

Corrosion, ECM
Dendrites &
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Reliability Functions in Product Lifecycle
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Development/
Proof of Concept Technical Feasibility Design
New Si and Packaging ’ Usa.age.s.tress conditions * Design
Technology " Reliability targets Verification
Understanding ’ Cus-tor.n-er Engagement * Implement
Feature/performance ' Rel'ab'lfty/ CPI/BLR Risks reliability
Reliability data Evaluatlc.m . solutions in the
eollaction * Test Vehicle Design and design flow
Anticipate new failure Corners. o * Review and
modes/mechanisms . Eng Venfuc‘tatlgr'\ DOE | assess any
Identify Reliability * Deliver Reliability Design violations/trade
Risks/FMEA Rule and aging model S
* |P Reliability
" Soft . N
Ll Design for Reliability
Center for Advanced Life Cycle Engineering a
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Product Qual

Optimize assembly
process and
materials
Reliability
hardware/dynamic
vector/models
Stress based
Qualification
Knowledge based
qualification

HV Production

* Early failure
rate

* Reliability
monitoring

* Solve field
reliability
fails

* Track field
failure rate

PHM

* Monitor the
health of
products in
field

* Adapt voltage
to
compensate
aging

* Replace failed
interconnect
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Designing for reliability: Reliability-physics process @
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INPOTS ANALYSIS OUTPUTS
Hardware » n - . : .
configuration . Stress_ Ana!ys1s Rellablll’_[y Marg!ns j> Rarlklrlg cl)f
materials, geometry, Estimate st_resses at fallqre sites Estimate design margins for potentia
architecture under life-cycle loading: each relevant failure failure
* Thermal mechanism due to stresses mechanisms
Life Cycle Loading « Thermo-mechanical at each failure site: and sites
* Vibration-shock * stress margin for overstress ,

_ : : Design
Operational Loads » Hygro-mechanical mechanisms tradeoffs
Power dissipation, * Diffusion » life margin for wearout

voltage, current, » Electromagnetic mechanisms Risk mitigation
frequency, duty cycle : i
E _ h AL Aggregation to the System Level solutions
Environmental Develop reliability block diagrams Accelerated
Loads Use Monte Carlo simulations test conditions
Temperature, relative Use Bayesian updates with field/test data (if any) —
humidity, pressure, shock. Reliability
The life cycle includes Sensitivity Analysis Assessment
transportation, Evaluate sensitivity of the product durability to
storage, handling and changes in: application, design, manufacturing

Application environments window, life-cycle support methodologies

Health
Prognostics
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Advanced chiplets: CPI challenges @

0 . . . . . Flexibility of  Tpin core Core ess HETEROGENEOUS
CPl issues are increasing with newer Si nodes substrate FCPBG INTEGRATION ROADMAP
O Device and packaging reliability were treated separately in old nodes Thick core
U Advanced Si with low k, CPI requires co-development of device and . Bump Stiffness
package

Cohesive strength

U Low k and Ultra low k introduction ' o e dislectic
U Fragile and poor adhesion

U Build up substrate
U High CTE and warpage

U Pb free or Cu pillar interconnect Chiplet o ﬁ120
Q Higher modulus el ey ' *t
0 | 4 pitch20um  pitch 40pum i
Complex die -
. .. < ] Active Interposer 100me - 8.0
U Big die size : £
SR B M AN 2
Q Higher power " Packaye — 3 e 2= - 2
~Substrate— 0B )
L Bump on trace 0 40
7]
L More advanced packaging induced board-chip-package interaction §
O WLP
0.0 b T T T .
U 2.5D/3D 10 15 20 25 30 35 40 45 50
0O Big FCBGA Nominal Dielectric Constant, k
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Chiplets: An overview of 3D IC stresses and reliability

Impact of Flip Chip Impact of TSV/uBump
Package on 3D chip- on top die
stack (CPI) e Built-in stress
eStress induced by Cu- eStress varies as function of
pillars on low-K temperature Impact of 3D-SIC
eStress induced by S P . .
overmold, laminates CTE [ Die 2 | bonding on d'es.
e - eStress during bonding
. | 0 ST e eStress due to underfill
Bl : ‘ : CTE mismatch
Impact of die thinning Impact of TSV on
eReleases stress bottom die
Strength of die eBuilt-in stress
... eStress varies as
Stress/strain can lead to ORIl TSRS
e mechanical failures due to

delamination, peel, fatigue, ...
e electrical impact due to Multi-scale
parameter shifts, increased variability, EM,...
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Microbumps:
* Material anisotropy
* Length-scale effects

WY v
Sy n/diveng

Source: IMEC

@ UNIVERSITY OF



SHE-induced FEOL failure modes

Electromigration

Bias Temperature
Instability

Hot carrier Injection

Time-Dependent
Dielectric
Breakdown

BTI, HCI, & TDDB
LT reduced

<
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EM Rule reduced

Heat transfer
from FinFET to metal




Typical CPl-induced MEOL/BEOL failure modes @
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- Reliability Via material, Silicon crystal - Mobility change
Pumping process orientation, P/N il o
- Circumferential
compression
2%
[
Barrier
£ =
i:
i=
- “t
T TET T T TTY * & Transverse Direction
Termperature {"C) E 5
i 4
§ 2 P @5i
y B w . =] - g H =N @si
= Ny | | :,
s 'm m I nuur'l“ 7: ”x. -u (: 1‘ ? r” m T % .
nn i o] .-' {1 ﬁ;lm- ;';1_ I“r r W e w l. . . R _§-l '.'___.._——0—‘
V) Insulation liner TSV pitch, M —.
material and diameter DistanceFrom TSV Along Y, um
TSV extrusion and de-lamination thickness Performance shifting due to T3V stress
- Tezzaron, RTI 2009 - IMEC, VLSI 2010
Source: IBM Source: Synopsys
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CBPIl-induced failure modes e o
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=

Meditek, 2017 IRPS
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Chiplets: Physics-based modeling simulation and co-design &
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Device/Chip
Si, WBG
SoC, Digital, RF, Analogue
Opto, Mixed Signal
Transistors, Gates, etc
FEOL, BEOL
Scale: nn-um

Package
SiP, 3DIC, BGA, Flip-Chip
WLP (Fan-in, Fan-out)
Interposers, TSV's
Solders, TIM, Wirebonds
Scale: um-cm

Board/System
Ph - /S ' / Organic, Ceramic, etc
VSICS caie _ ’T*:“'mﬂl“h:“"“‘s"“‘:"m Market Applications
. ] ermal Managemen
loT & Wearable
Modelling and S, SubSystems, Enclosures [l . paopie Devices
- - g NEGE, Lghing, @ * HPC & DataCenters
SImU|at|0n Scale: cm-m Medical & Health

Automotive
Aerospace & Defense

Source: HIR; Modelling and Simulation TWG
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System-level multiphysics simulations

urrent Densityy
i (Slwave) t!‘5] Power

Electrical DC Analysis

Thermal

Convergence
No

Electrothermal Simulations account for Joule Heating
losses within PCBs and packages for a more accurate

Temperature
(Icepak)

Thermal Analysis
(Conductive Losses) (Operating Temperature)

2 ; Maximum DC Power
Simulation Type :
Temperature Consumption
Without Joule Heating 86.57C 5.817 Watts
Siwave-Icepak Coupling 103.08 C 7.601 Watts

calce Center for Advanced Life Cycle Engineering
https://calce.umd.edu  Copyright © 2021 CALCE

14

Ih—————————

Thermal-Stress Analysis
(Deformation)
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Source: ANSYS
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Multi-scale and multi-physics CPI flow

Package-scale simulation (FEA)
Input: geometry; material properties;
smeared mechanical properties for RDLs,
Silicon/TSV bulk, interconnect.

Output: field of displacemen

components on the die faces.

==

Die-scale simulation (FEA)
Input: geometry; field of
displacements on the die faces;
coordinate-dependent mechanical
properties for RDLs, Silicon/TSV bulk,
interconnect.

Output: Distribution of the strain
components across device layer.

Layout-scale w/feature-scale

resolution (compact model):
Input: GDS; distribution of the strain
components across device layer.

Output: Transistor-to-transistor
variation in stress components

calce Center for Advanced Life Cycle Engineering -
https://calce.umd.edu  Copyright © 2021 CALCE

Package scale

Package simulations
Package tech file
=
Die scale
TSV induced stress
(compact model)

Feature scale

Composite interconnect
layers (compact model)

Transistors layout effect
(compact model)

|
Design (GDSIL OASIS
Design tech file

Stress and strain

components (per transistor);
mobility shift

<
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Modes/Mechanisms/Models for Degradation & Failure A\
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Chiplet reliability assessment capabilities: status

Key Elements for DfR Flow

Wafer Level DfR

Package and System Level DfR

Chip to Package to Board Interactions

Electrical and Thermal Stress

Localized Self Heating and hot spots

Global Level thermal managements

FEOL/BEOL and systeme level thermal
interactions

Failure Modes

TDDB, HCl, BTI, EM and SM, etc

Warpage, delamination; C4, ubump,
DBI, TSV, Optical Via interconnect
fatigue and migration failure, etc

Global and local Stress effects on Cu/ELK
failure, stress effects on FET's mobility

Failure Mechanism and
Reliability Model

Weibull, Lognormal, Power Law Maodel,
Aging Model, etc

Weibull, Lognormal, multiphysics
models, etc; many are under
development

Under development

Material Chaterization and
Modeling

Modeling device thermal
characteristics (Thermal resistance)
Modeling device aging

Modeling the impact of stress on device
threshold, delay, etc.

To make materials data useable by
EDA tools — and enable them to
produce accurate and meaningful
results — materials data needs to be
presented in a machine-readable
format and agreed upon with EDA tool
vendor.

Modelling multi scale and multi physics
failures

Process Design Kit (PDK)

Foundry Design Kit

Assembly Process Design Kit

Under development

EDA Flow

Cadence Spectre/HSPICE, etc

Ansys/Mentor, etc

Mentor/Synopsys

Circuit/System Reliability

HCI/BTI and EM Available; TDDB and
SM not Available

Under development

Under development

Established

Partially Established

Under development or Not
Available

https://calce.umd.edu
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Qualification and testing: Reliability validation/verification ...
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b

[N —
(W EEE 1

TSNS
A 3
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The changing and challenging landscape sed for dynar exible models and method

Extreme Extrernelusages/ Latest tech nodes
environments lifetime
U New failure modes WD T CllAe Innovative FA/FI StOCha.StIC
components tests modeling
Field Telemetry Reliability Physics [CESUliE DI el iogelvere
optimizations loop

Multi-physics methods to Qualification testing Data feedback loop with Integrated PHM - Self-
guantify ‘stress’ and needs to be Customized, Digital Twins to validate cognizant, intelligent,

‘strength’ distributions at Knowledge-based and failure characteristics and bio-mimetic hardware
potential sites of failure Innovative run virtual experiments to ‘age with grace’

Source: Sahasrabudhe (Intel)
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Summary: Reliable Chiplets and HI Systems SHIR
Convergence of Reliability-Physics (RP) and Artificial Intelligence (Al) .moseou

INTEGRATION ROADMAP

Fatigue and Fracture  *Whiskers  Corrosion Semiconductor and Packaging
*Plasticity, creep *Aging of polymers « ECM -

TDDB -Interfacial failures e ECIUIFZ:ment Mar}gfacturers
*ESD/EOS \. Root-cause analysis aﬁd Economics OmDUter onsumer

« Electromigration Design for reliability: Material Behavior ‘ of Reliability: “Telecommunication

Virtual Qualification

* Wear/fretting Software Design Tools T L:;zr?%c;;;ﬁﬁ Medical
_ Reliability
Manufacturing : V. : ' | Infrastructure:
( for reliability: \ Digital Twins = Supply Chain Mgmt.
Process design and Assessment

Process variability

Aerospace — Sustainment for Reliability:
Automotive iEonalilieatien . Canaries, Condition Monitoring,
\ 117 L0 - System level \ Health Prognostics, Risk loT
Defense Accelerated Stress Tests | Reliability Assessment: Mitigation, CBM/PHM .
Industrial Quality Assurance \ EMEA/EMECA Cloud Computing
Reliability aggregation Real-time Data Analytics

Energy exploration Machine Learning and Artificial Intelligence

Intelligent, resilient, self-cognizant, self-healing chiplet-based HI systems

Center for Advanced Life Cycle Engineering 19 @ UNIVERSITY OF
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Global Companies Rate Advantest THE BEST ATE Company 2021

Advantest receives highest ratings from customers in
annual VLSIresearch Customer Satisfaction Survey

for 2 consecutive years.

Global customers name Advantest THE BEST “Year-after-year the company has delivered on its promise
of technological excellence and it remains clear that Advantest

supplier of test equipment in 2020 and 2021, . , .
, , : , , _ keeps their customers’ successes central to their strategy.
with highest ratings in categories of: Congratulations on celebrating 33 years of recognition
for outstanding customer satisfaction.”
Technical Leadership — Partnership — Trust — Risto Puhakka, President VLSIresearch

— Recommended Supplier — Field Service



Amkor’s Differentiators 9“"‘“

Technology ' Service
Advanced Packaging Leadership QualityFIRST Culture Design & Test Through Drop Ship
Engineering Services Execution Manufacturing Footprint

Broad Portfolio Automation Local Sales & Support

© 2021 Amkor Technology, Inc.
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