

Too Hot To Test

February 9 - 11, 2021

www.meptec.org

System Power Modeling and Analysis for Test

David Ratchkov
CEO/Founder
david@thracesystems.com
https://thracesystems.com

2/10/2021

Introduction

CEO of Thrace Systems, focuses on System Power EDA
Co-chair of CDX (Chiplet Design Exchange) workstream under OCP ODSA
Previously 18 years and Broadcom/Avago/LSI/LSI Logic
Responsible for power tools and methodology

Product line

PowerMeter[™] is a comprehensive and collaborative power analysis platform for System Level Power Analysis

Cloud-native for best-of-class collaboration and concurrent analysis

IEEE2416 model generator

Design Dashboard Engine

Agenda

Power and Thermal Analysis Overview

Objectives

Definitions

System Level Power models

Flows

Models in action

Chiplet system power and thermal models and results

Q&A

Objectives of Power and Thermal Analysis

Resolve Thermal concerns

Need to know sequence, location, amount and duration of power dissipation

Power supply concerns

Need to know worst case current draw and current draw change

Battery concerns

Need to know energy consumption over very long period of time

Flow and model needs: What is your System?

System

Any configuration of elements outside of a unit's power supplies

This includes supplies, boards, connectivity, packaging, other components inside or outside of the package, or lack of them

Scenario

A full set of configuration parameters to describe a single unit of operation

This includes voltage levels, ambient temperatures, modes of operation

Flow and model needs: What is your System?

Planning for Test needs to start as early as architecture level

Plan supplies (System)

Plan thermal aspects of system, both application and test (System)

Plan test flow and sequences (Scenarios)

Sets a baseline electrical and thermal constraints

Need flexible System Power Models

Maintain compatibility over time and between flows

Modeling parameters outside of typical bounds

System Power Model (SPM)

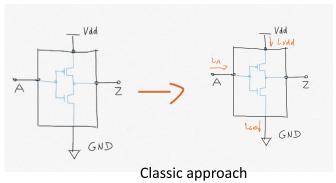
Thrace System's System Power Model works from pre-RTL architecture level to post-Si analysis

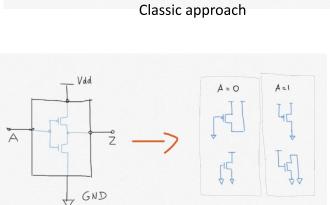
Designed with "any-system" in mind

Maintains historical learnings through technology mapping

Higher level of abstraction modeling than classic models (Liberty)

Can model almost anything - regulators, SERDES, transaction power


Designed to scale to handle large and complex systems


Includes support for IEEE2416 Power Contributors

Announced at DAC'20 first production IEEE2416 generator as part of PowerMeter See Tutorial replay here https://si2.org/dac-upm-tutorial/

Introduction to IEEE2416

IEEE2416 Power Contributor

Classic approach to power modelling (Liberty)

Capture boundary pin currents at a fixed
 Process, Voltage and Temperature

PROS: Very Simple models

CONS: Fixed value, not possible to vary P,V,T,

need a new model

IEEE2416 approach targets variable Process, Voltage and Temperature post model generation

- Capture circuit details, estimate leakage later PROS:
 - Designed with variable P,V,T in mind End-user can vary P,V,T

CDX Reference flow

ODSA CDX workstream

- Focus on flow pipe clean and PoC
- Design data seeded by zGlue OmniChip Reference Design

Si2 UPM workgroup

 Focus on IEEE2416 "IEEE Standard for Power Modeling to Enable System Level Analysis", aka UPM

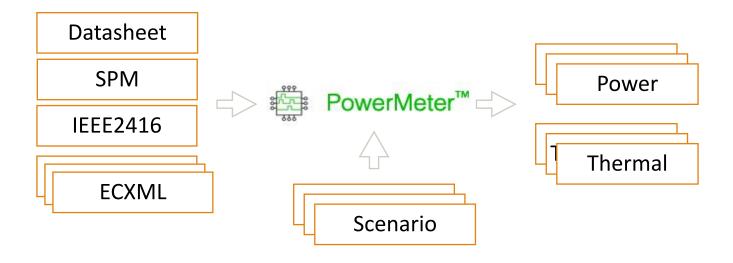
JEDEC

- Released ECXML spec in Sept'20

Chiplet power data

- Extract information from datasheet
- Provide SPM, when available
 - ECXML

Power analysis



- Scenarios and System information
- Use PowerMeter[™] to perform system-level power analysis
- Generate SPM, if needed
 - Generate ECXML

Thermal analysis

Reference Flow

Concurrent Multi-Mode Multi-System functional and test power and thermal analysis

CDX Reference design power analysis

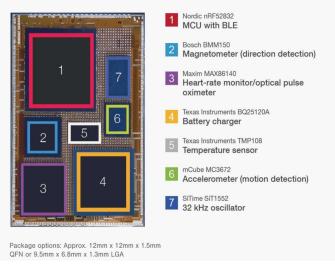
Power data in datasheet

- Can it be converted to machine readable format?
- Can it be understood by tools?

System model?

Scenario definition

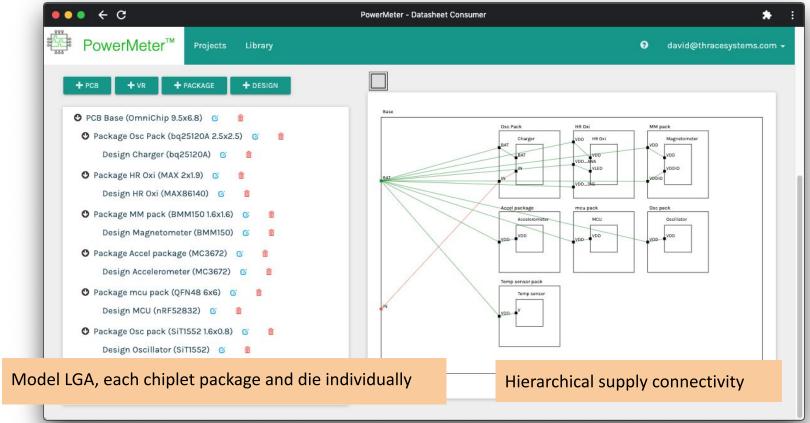
- Choose 2 application scenarios


Power analysis

Power and energy

Full analysis results <u>here</u> (see May 8, 2020 links) or <u>here</u>

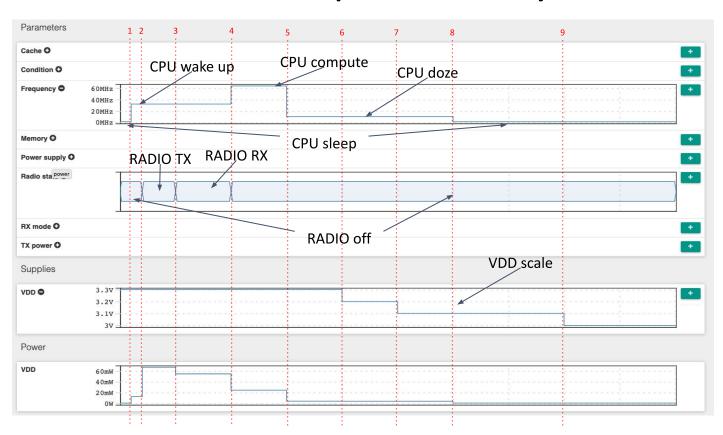
OmniChip Reference Design

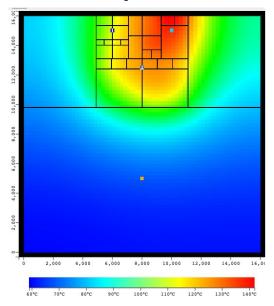


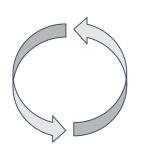
zGlue

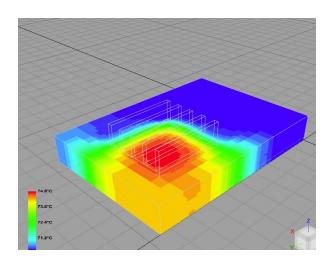
zGlue Confidential and Proprietary

1

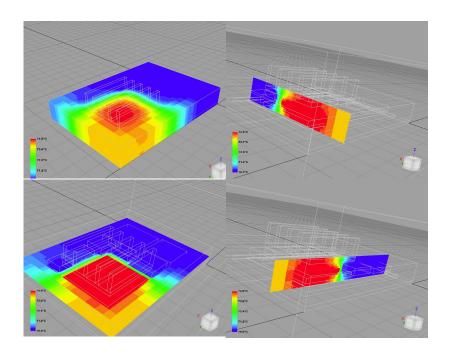

CDX Example System: Setup Overview


MCU Scenario definition and power analysis


- 1. CPU wake up for processing
- 2. Begin TX
- 3. TX done, begin RX
- 4. RX done, compute result
- 5. Doze
- 6. Lower voltage
- Lower voltage again
- 8. CPU sleep
- Lower voltage again



Die & System Collaborative Thermal Analysis



High resolution Die level temperature analysis (sub-10um) Performed by SoC/Chiplet designers Uses simplified System Environment Model High resolution System level temperature analysis Performed by System designers Uses System Power Model generated by SoC designers

Thermal analysis with ECXML

Concurrent analysis of Test-based Scenarios and Systems

Quickly iterate different options

Explore heat dissipation paths

	ECXML1	ECXML2	ECXML3	
Scenario 1	1W@35C		2W@50C	
Scenario 2		1.2W@45C	1.3W@34C	
Scenario 3		0.7W@34C		

Summary

A System Power Model enables power analysis at a higher-level of any system

Collaborative and concurrent approach to power and thermal analysis is needed starting at the early design stages

Early test system specification and modeling is key to meeting targets

Thank You!

Thank you sponsors!

ADVANTEST®

A **global leader** in the ATE industry with a WW installed base of over 30,000 systems

Our nanotechnology products support leading-edge semiconductor processes at the **1Xnm node**

Our diverse workforce includes **5,500 employees** from **50 countries**

Eco-friendly policies emphasize reduction of our carbon footprint

2018 Global Technology Leader by Thomson Reuters

60+

Innovating in the measurement arena for **60+ years**

A VLSIresearch 10 BEST supplier for 32 consecutive years

Amkor's Differentiators

Technology

Advanced Packaging Leadership
Engineering Services
Broad Portfolio

Quality

QualityFIRST Culture Execution Automation

Service

Design & Test Through Drop Ship

Manufacturing Footprint

Local Sales & Support

Premier Assembly Materials Designer and Manufacturer:

- Thermal Interface Materials
 - Liquid Metals
 - Hybrid Metal TIMs
 - Heat-Spring[®]
- Solder Pastes, Fluxes, Preforms, Alloys, Wire, and Bars
- Semiconductor Fluxes and Pastes
- Metals and Compounds

Free technical content at your fingertips

www.indium.com/insiderseries

COPYRIGHT NOTICE

This presentation in this publication was presented at **Too Hot to Test** (February 9-11, 2021). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

