

Too Hot To Test

February 9 - 11, 2021

www.meptec.org

Thermal challenges during test of High-Performance CPUs for client and server segments

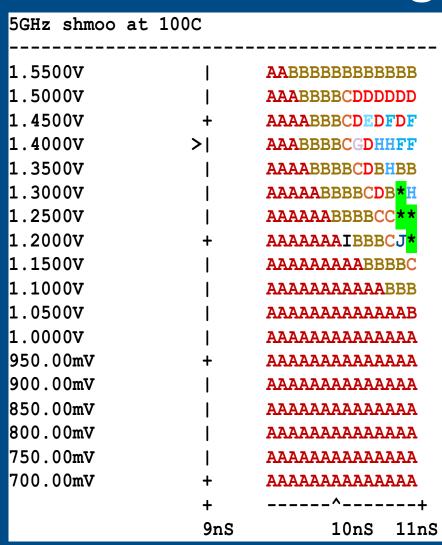
Arun Krishnamoorthy

Sr. Principal Engineer, Intel corporation

February 2021

Agenda

- Introduction to general problem Product Dev Engineers face
- Tester thermal challenges vis-à-vis System
- Hotspots and power density trends
- Tests: Scan, Array, Functional
- Look deep into the guts of the tests
- Mitigations: Not solutions
- Future: What is needed to solve this problem.


When you are chasing the Top Bin/Speed ...

No one is happy about this shmoo ☺

5GHz shmoo a	t 100C	
1.5500V	1	AABBBBBBBBBBBB
1.5000V	1	AAABBBBCDDDDDD
1.4500V	+	AAAABBBCDEDFDF
1.4000V	>	AAABBBBCGDHHFF
1.3500V	1	AAAABBBBCDBHBB
1.3000V	1	AAAAABBBBCDB <mark>*</mark> H
1.2500V	1	AAAAABBBBCC <mark>**</mark>
1.2000V	+	AAAAAAIBBBCJ <mark>*</mark>
1.1500V	1	AAAAAAAABBBBC
1.1000V	1	AAAAAAAAABBB
1.0500V	1	AAAAAAAAAAAB
1.0000V	1	AAAAAAAAAAA
950.00mV	+	AAAAAAAAAAA
900.00mV	1	AAAAAAAAAAA
850.00mV	1	AAAAAAAAAAA
800.00mV	1	ААААААААААА
750.00mV	1	AAAAAAAAAAA
700.00mV	+	ААААААААААА
	+	+
	9nS	10nS 11nS

.... and some engineer comes and shows this

1.5500V	1	*****
1.5000V	1	A*******
1.4500V	+	<u> </u>
1.4000V	>	<u> </u>
1.3500V	1	AB******
1.3000V	1	B A *******
1.2500V	1	CB A ********
1.2000V	+	CCCBA*******
1.1500V	1	DCCCBA <mark>******</mark>
1.1000V	1	DDDCCCBA <mark>*****</mark>
1.0500V	1	DDDDDCCCB <mark>E</mark> ****
1.0000V	1	DDDDDDDCCCBAAE
950.00mV	+	DDDDDDDDDDCCB
900.00mV	1	DDDDDDDDDDDD
850.00mV	1	DDDDDDDDDDDD
Vm00.008	1	DDDDDDDDDDDD
750.00mV	1	DDDDDDDDDDDD
700.00mV	+	DDDDDDDDDDDD
	+	+
	9nS	10nS 11nS

...the start of the nightmare for the "thermal guy"

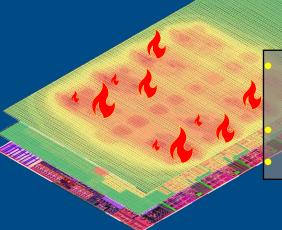
All hell breaks loose....

- Arch: . . . it is architected to run at the top speed; even higher!!! . . .
- Design: . . . we PVT-ed it correctly!!! Why is HVM having problem? .
- Validation: . . . It is (often one unit) running okay on the system , Right?
- DFx: . . . Test vectors are correct, passing simulation and emulation; heck even passing on the tester. Run it at the top speed please . .
- Fab/Assembly: . . . Pretty silicon, nice package too. Don't burn it up please . . .
- Q&R: . . . No relaxation in any specs, TDP, Tj etc. No . No.. No...
- Planning: . . . We need minimum15% top speed Binsplit and by next week please ... and don't increase test time and crater my factory capacity. Thanks.

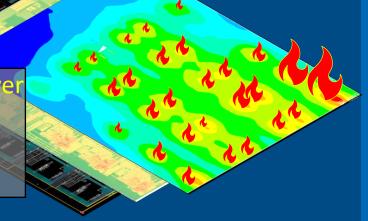
```
. . . and . .
```

Me, the Product Development Engineer: ... but, but, but ...

... It is too Hot to test !!!!

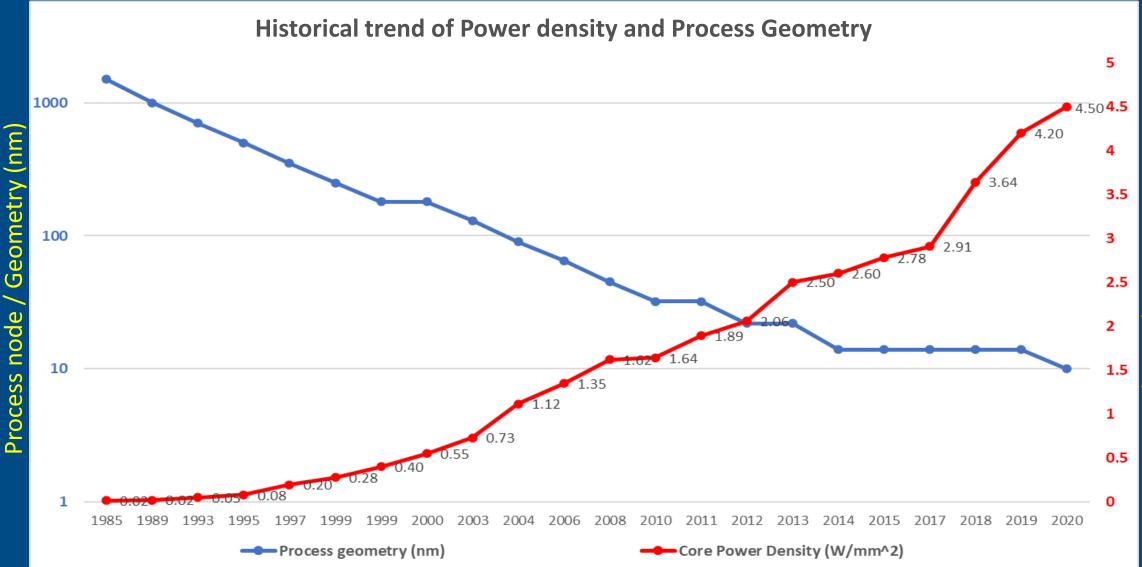

Tester vs System

Tester	System
Almost all tests are in DFx Mode and bypass the on-die Power/Thermal control loops.	On-die Power, Thermal management: Throttling kicks-in → Power ↓, Tj-rise ↓
Test patterns are short and repetitive. Short bursts → sharp transients → Tj-rise ↑↑	System tests are long enough for Power and thermal controls / feedback loops to kick-in
Cores, for test efficiency, are mostly lock-step /clock synchronous leading to power spikes as well as droop	Cores and Threads are mostly asynchronous; power peaks do not line up
Maximize # of Cores / IP that can be run together \rightarrow Test Time \downarrow \rightarrow higher power \uparrow \rightarrow Tj-rise \uparrow	# of cores / IP running at the same time at max freq is restricted by SKU config / architecture definition.
Test power can be 2x-10x than the spec power. Often tested above / outside of spec envelop. > Tj-throttle	System tests seldom consume more power than specification; within thermal envelope. < Tj-throttle
Temporary thermal interface: Dry, Liquid TIM, poor / inconsistent thermal conductivity, Not always the best flatness, warpage make heat transfer worse. Tj-rise	Robust thermal interfaces: Compliant or semi-permanent TIM, almost flat surfaces, no warpage etc.


Look deep into the silicon, package

Both Client and Server processors produce high powe and high-power density hotspots

Clients Chips: Very high single thread frequency


Server chips: High core count, BW and Cdyn

- Many hotspots, and they move around per WL, application or test type
- Edge , corner effects, crowding of hotspots → Tj-rise ↑
- TIM1, TIM2, packaging aspects induced impacts influence Tj-rise
- Thermal mass diff between Bare die, Lidded part introduce unique challenges
 - Bare die: low thermal mass → Fast Tj-rise. Too fast for handlers to respond
 - Lidded part: high thermal mass -> sluggish cooling, unable to keep up with test flow
- Chip layout / floor plan, IP design greatly influences power distribution

Power Densities of WLs / tests along with total power are the key

Power density is the villain! Look at the trend

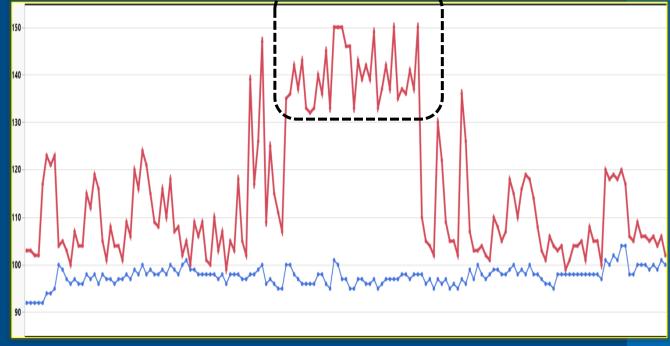
Coming back to test....

Types of tests we are worried about

- Array testing: MBIST, Repair, Redundancy, kitchen sink
- Scan testing: Stuck @ and @Speed
- Functional: Cache Load / SBFT, System ported tests
- IO tests
- Analog calibrations

Static temp sensitive tests Mostly defect modes, leakage

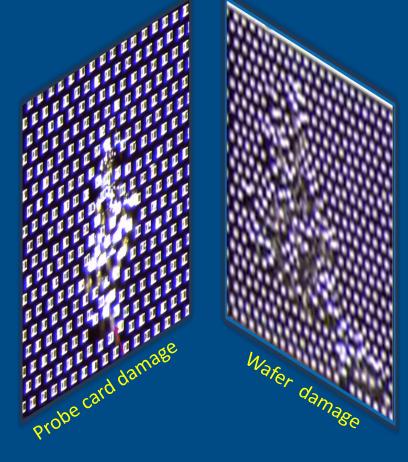
Test operations:


- Sort
- Burn-In/Stress
- Final test (class)
- System Level Test (SLT/PPV)

Tj-rise sensitive
Speed binning tests
dFmax/dT, dVmin/dT, dF/dV

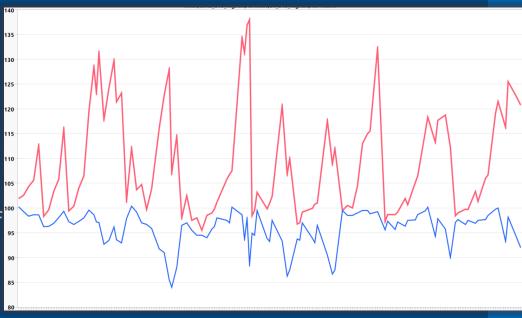
Which tests and how they exasperate the condition: Scan

- Scan: (S@ and @S)
 - Shift In:
 - Speed is low only few 100s of MHz, but many chains:
 High Cdyn → Moderate density / High Total power
 - Capture:
 - Short period, couple of cycle at several GHz of speed → severe droop, High power density /High power
 - Activity factor aka number of simultaneous captures → Tunable (complex) High power density.
 - Shift out: Low speed: Not speed critical.
 - Test time vs. Tj rise is a constant battle



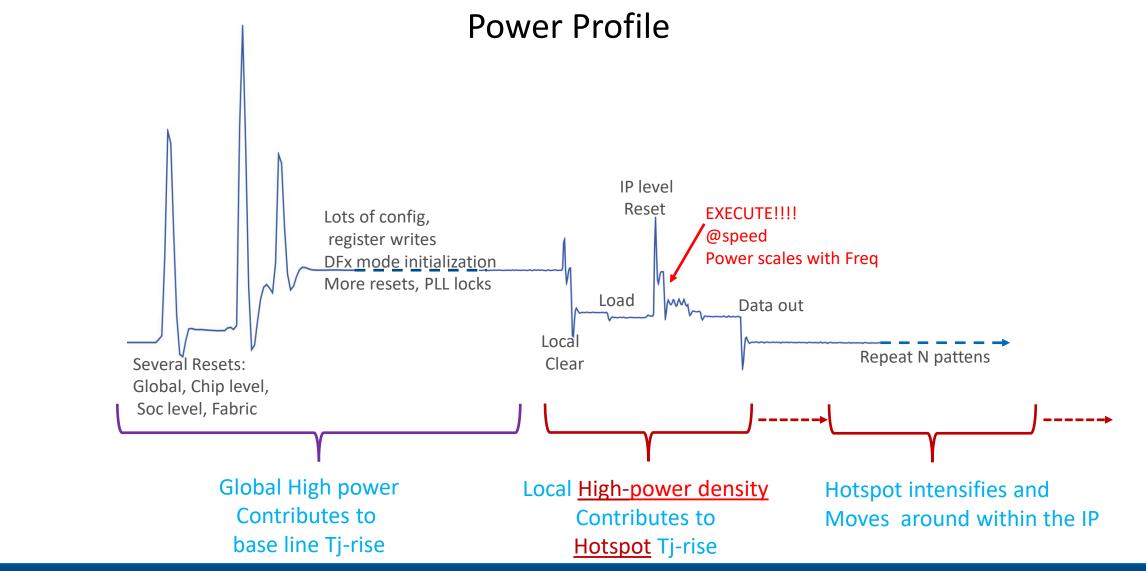
- Tuning scan test switching capacitance is complex.
- > Test Cdyn could be as high as 3-10x to a real-world application
- > Scan @S (dF,V)/dT) needs correlation with system Fmax, Vmin of the IP

Which tests and how they exasperate the condition:


Array

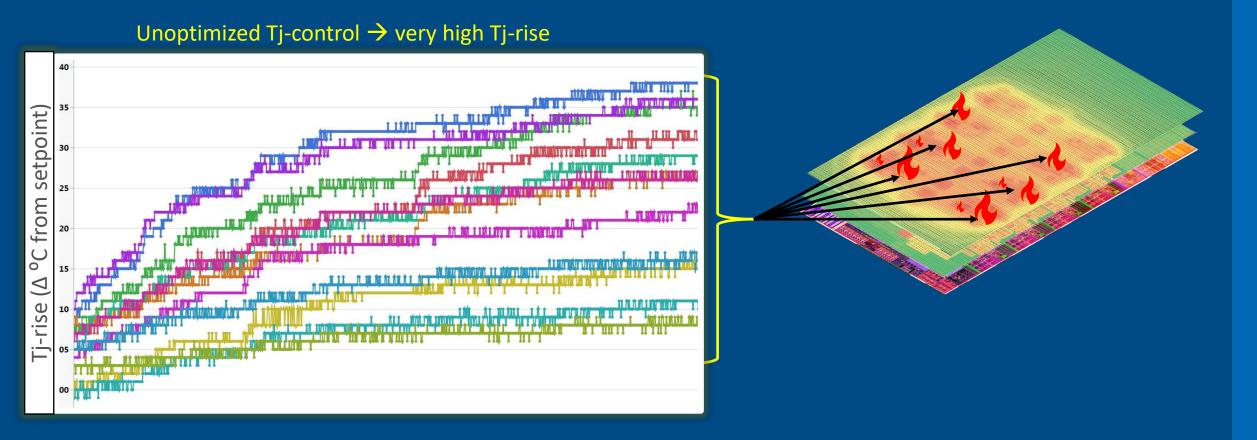
- Array: BIST / Mbist / Kitchen sink
 - "Fire and Forget" Bist Engine is good for test time but very bad for thermal control / monitoring.
 - Fast local Tj-rise Hotspots leading to thermal runaway.
 - Running many Bist engines in parallel in the chip to save test time often results in severely limiting Fmax (Freq wall) or even burnt chips, damaging probe cards
 - Pattern lists are often too long (kitchen sinks) to realize temp has increased.
 - Server chips have HUGE caches, very long tests.
 - Low power modes can be deceiving; may give false fmax/ vmin, DPM risk; correlation needed.
- > Very difficult to model pre-silicon the BIST power consumption.
- > Test efficiency (TT) vs Fmax (or Vmin) vs quality is a constant battle.

Which tests and how they exasperate the condition: Functional. (Cache load, Mission Mode)


- Cache Load / Structural Based Functional Tests:
 - "Must Have" tests for precise Fmax vs Vmin and coverage / topoff etc.
 - Usually have several functional resets, clocked with normal PLL-locks, Fuse-register configurations to mimic real IP-execution via RTL simulation / test generation.
 - Thousands of patterns each of <0.5-1milli sec but each packs a punch !!!
 - Huge localized power density + high total raw base line power of other clusters
 - Double Whammy!!!
 - Super sensitive to temperature / Tj-rise
 - Super sensitive to local droop.

Unoptimized Functional patterns leading to huge transients

- Highly transient power spikes make it hard to temp control.
- > Often all cores are lock step compounding the problem

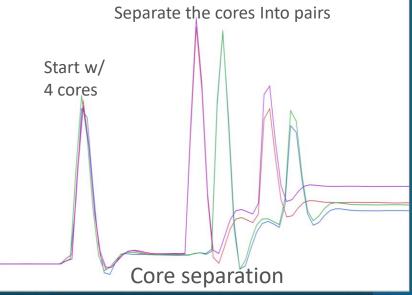

Look deeper into the generic structure of a test

Power density and Hotspot Tj-rise is worse in Compute intense IPs like AVX2/3 (256 / 512bit operations)

Tj-rise due to transient High power density operation

Many hotspots in the chip and they differ in power density and Tj-rise

What can we do?


- Thermal control equipment alone will NOT solve the problem
 - Often, the temperature feedback alone is insufficient.
 - Heater, Thermal Diode feedback are very slow and far away from hotspots
 - Bare die products, due to lack of thermal mass will heat up too fast
 - Thermal mass of the Lidded parts, though good for smoothening transients, also acts as a ballast against the thermal control equipment response to cool the DUT.
- We need to address the source of the problem: Heat generation, reduce power density

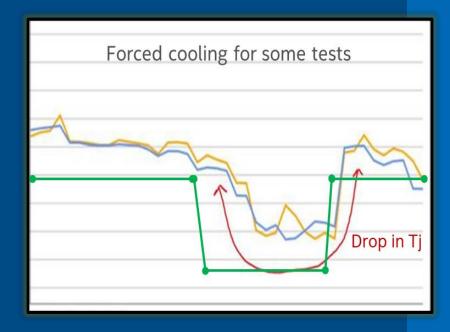
Some mitigations (Not always viable for HVM)

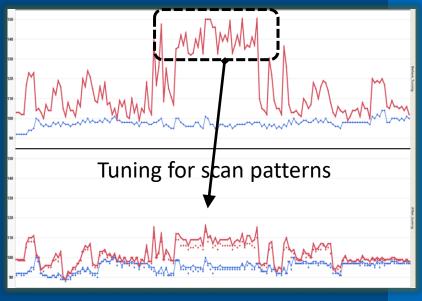
- Core separation / staggering: Spreading the heat temporally and reducing the peak
 - Not intuitive and not seamless to test generation.
 - Complex to build a Test program flow and confusing execution.
 - Fmax/Vmin, binning concerns due pairing / combinations
 - Not all type of content in the same bin / flow requires this.
 - Server chips have large area too many cores, many combinations.
 - Sometimes gives better Fmax/Vmin than real: a DPM problem
 - Not economical for Test time.

Interleave Narcoleptic / cooling patterns:

- Not easy to characterize length vs cooling.
- Not all patterns need cooling / same amount of cooling.
- No consistent results. (clocks are still running to avoid PLL re-locks)
- Not all bins / flows produce same Tj-rise hence do not need same amount of cooling
- Often end up with conservative length. (1 or 2 narco patterns to fit-all)
- Confuses pattern re-ordering and test time reduction efforts.
- Manual effort, lots of hand-holding required.
- Blows test time budgets by 1.5X-4X, not economical.

1.5500V	1 * * * * * * * * * * * * * * * * * * *	
1.5000V	A	
1.4500V	+A********	
1.4000V	> A*******	
1.3500V	AB*******	
1.3000V	BA*******	
1.2500V	CBA++++++++	
1.2000V	+CCCBA******	
1.1500V	DCCCBA******	
1.1000V	IDDDDDCCCBE**** 2-3X	
1.0500V	DDDDDDCCCBE**** Z-3A	
1.0000V	DDDDDDDDCCCBAAE Toch	
950.00mV	+DDDDDDDDDDDDCCB Test	
900.00mV	DDDDDDDDDDDDD	
850.00mV	I DDDDDDDDDDDDDDD TIME	
800.00mV	DDDDDDDDDDDDD	
750.00mV	DDDDDDDDDDDDD	
700.00mV	+DDDDDDDDDDDDD	
	++	
Interleave narcoleptic patterns		


Some mitigations (continued)


Forced cooling / stepping:

- Stopping the test flow and temporarily increase cooling / force cooling by adjusting the handler for select tests. Only.
- Usually needs a full powering down of the DUT before and after.
- Very disruptive to speed binning flows.
- May have to do these few times in the test flow for multiple content.
- Predicting where in the flow to do this and revert after is not easy.
- Very tricky for the thermal control feedback loops.
- May be even bad for thermal control equipment's MTBF.
- Not a HVM viable option.

Tuning for scan patterns:

- Provision (DFx) for tuning must be present in design.
- Chopping chains as an alternative is counter productive.
- Confuses coverage, yield signature analysis tools.
- Thermal Tuning only for scan tests is labor intensive.
- Needs to be repeated for every test program generation.

Future: What is needed to solve this problem.

Design Architecture: (Industry wide adoption)

• Power density / Temperature aware IP design, Layout and floor plan tools. ROI analysis Tools at IP design /SOC integration stage: For e.g. xx sq um of whitespace → Tj↓, Fmax ↑, Vmin ↓, Power ↓

DFx / Test:

- Scan power density modulation :DFx for dynamic, on the fly, in-tester seamless @S power,/Cdyn/AF change.
- Array Mbist power reduction / simultaneous execution (w/o breaking the bank). Low power Mbist
- Easier tools for core separation / staggering at test generation state with simulation / emulation.

Telemetry:

- DFx / test mode surviving on-die thermal managements.
- More sensors on the SOC, closer to the hotspots with easy access during test
- Research Needed: Area efficient / ultra-small DTS /nano-remote sensors. Tools for automatic plumbing of sensors in 3rd party IPs

Tester / thermal control equipment:

- Better thermal, power feedbacks, hotspot monitoring, test program and handler handshakes
- Better TIM, higher thermal capacity, faster response, Intelligent control algorithms.

Q&A

Thank you sponsors!

ADVANTEST®

A **global leader** in the ATE industry with a WW installed base of over 30,000 systems

Our nanotechnology products support leading-edge semiconductor processes at the **1Xnm node**

Our diverse workforce includes **5,500 employees** from **50 countries**

Eco-friendly policies emphasize reduction of our carbon footprint

2018 Global Technology Leader by Thomson Reuters

60+

Innovating in the measurement arena for **60+ years**

A VLSIresearch 10 BEST supplier for 32 consecutive years

Amkor's Differentiators

Technology

Advanced Packaging Leadership
Engineering Services
Broad Portfolio

Quality

QualityFIRST Culture Execution Automation

Service

Design & Test Through Drop Ship
Manufacturing Footprint
Local Sales & Support

Premier Assembly Materials Designer and Manufacturer:

- Thermal Interface Materials
 - Liquid Metals
 - Hybrid Metal TIMs
 - Heat-Spring[®]
- Solder Pastes, Fluxes, Preforms, Alloys, Wire, and Bars
- Semiconductor Fluxes and Pastes
- Metals and Compounds

Free technical content at your fingertips

www.indium.com/insiderseries

COPYRIGHT NOTICE

This presentation in this publication was presented at **Too Hot to Test** (February 9-11, 2021). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

