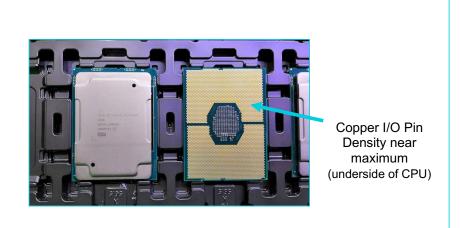


Not Just Chips

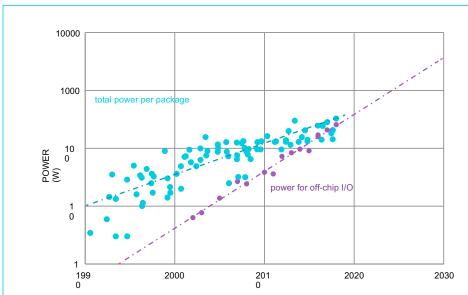
April 4-6, 2023

www.meptec.org

Silicon Photonics Chiplet Package -Optical Assembly


Chong Zhang, Ayar Labs, Sr. Engineering Manager, Mar 20'23

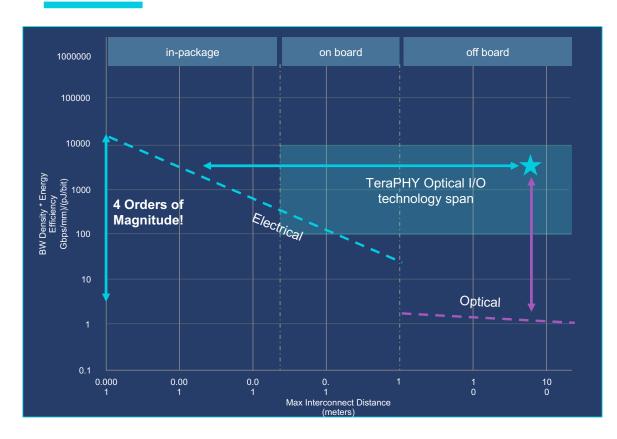
Agenda (from MEPTEC)


- Ayar Labs' Silicon Photonics Optical IO Chiplet
- 2nd Level Optical Interface Summary
- Optical Fibers in Silicon Photonics Packaging
- 1st Level Optical Interface Summary
- Optical Adhesive Requirement
- Optical Assembly Tool Requirement
- Summary

Ayar Labs' Mission: In-Package Optical I/O

Problem

- · Package performance is pin limited
- Power for off-chip I/O increasing and unsustainable



Benefits of Optical I/O

- More power available for compute
- Greater I/O bandwidth to feed more powerful CPU

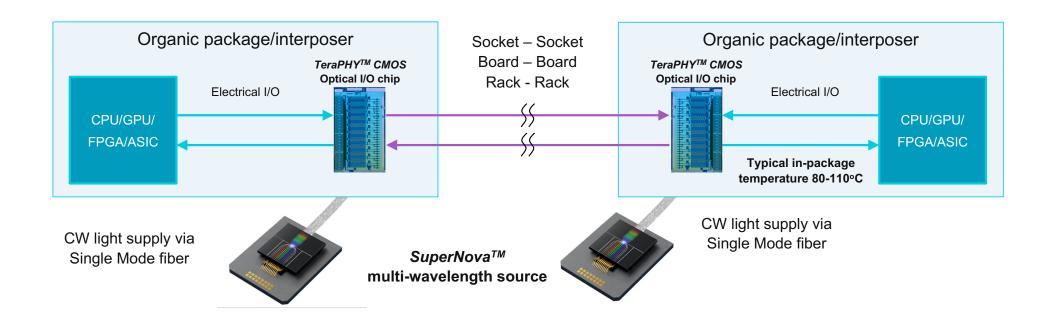
Source: Xeon Cascade Lake, Anandtech April 2019; Source: G. Keeler, DARPA ERI 2019

The Case for In-Package Optical I/O

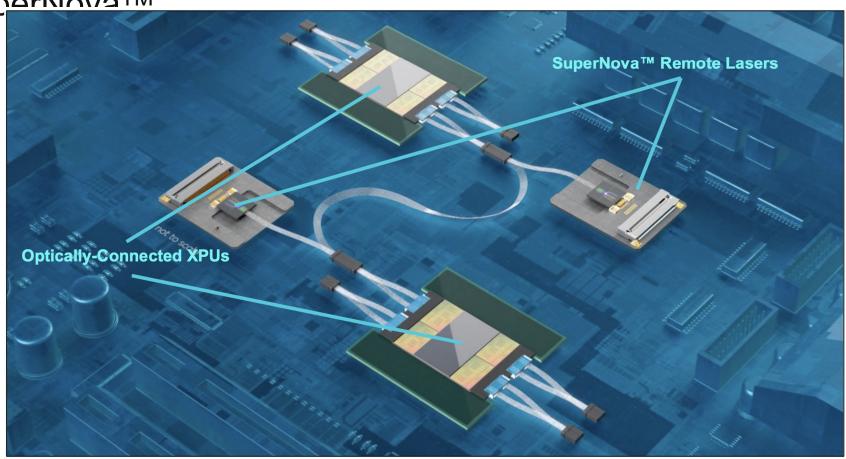
Benefits of Optical I/O

- Existing in-package electrical chiplet I/O meets bandwidth, density, and power needs, but cannot go further than a few mm.
- Existing optical solutions can support 100's of meters of reach, but cannot meet performance needs.
- Ayar Labs Optical I/O solution combines the best of both worlds.

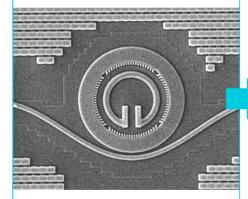
[Gordon Keeler, DARPA ERI Summit 2019]


AyarLabs © 2023 All rights reserved

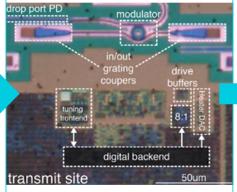
Optical I/O will Redefine the Compute Socket


A power efficient, high bandwidth, low latency interconnect WITH REACH will redefine computing architectures

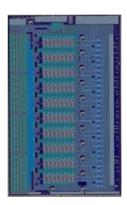
Ayar Labs Core Technology


Ayar Labs - System solution with TeraPHY™ and

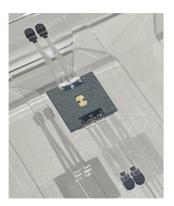
SuperNovaTM


What Does this New Optical I/O Technology Look Like?

Micro-ring Resonators


Up to 100x smaller than optical devices in traditional ethernet transceivers

Monolithic Integration


Dense integration of all electronics (TIAs, drivers, equalization, control) and photonics (waveguides, modulators, detectors) on a single CMOS chip

Optical I/O Chiplets


- TeraPHY[™] chiplet for inpackage optical I/O
- Multi-Tbps with <5pJ/bit
- Nanosecond latency (no FEC required)

SoC In-Package Integration

- Integration with state-ofthe-art CPU/GPU/ASIC
- Direct from the package optical I/O

TeraPHY[™] In-Package Optical I/O Chiplet

AyarLabs © 2023 All rights reserved

Features

- Supports AIB parallel electrical interface
- Future support for other parallel and serial interfaces
- 8 full-duplex optical ports
- 8 WDM slices per optical port
- Configurable up to 256 Gb/s per port (2 Tb/s per chiplet)
- NRZ modulation format on the optical port no Forward Error Correction (FEC) required!
- Roadmap to 32+ Tb/s per TeraPHY[™] chiplet
- Energy efficiency < 5 pJ/bit
- Latency < 2 x 5ns + TOF
- Distances up to 2km

TeraPHYTM Core Product Roadmap

Host SOC tailored Electrical Interfaces ("Parallel" with 2.5D packaging or "Serial" Organic Packaging)

Performance > Power

Note: Chip configurations are notional and subject to change

With every generation we double the bandwidth at the same time as lowering the energy per bit

2022

2028+

32 Tbps Chip

8 - 16 macros 32 λ / macro

56 - 112Gbps/λ

2028

16 Tbps Chip

8 -16 macros

16 - 32 λ / macro

56 - 112Gbps/λ

2026 8 Tbps Chip

8 - 16 macros

8 - 16 λ / macro

32 - 112 Gbps/λ

2024 4 Tbps Chip

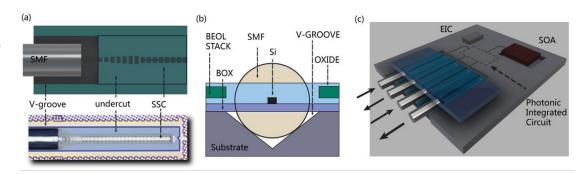
8 - 16 macros 8 λ / macro

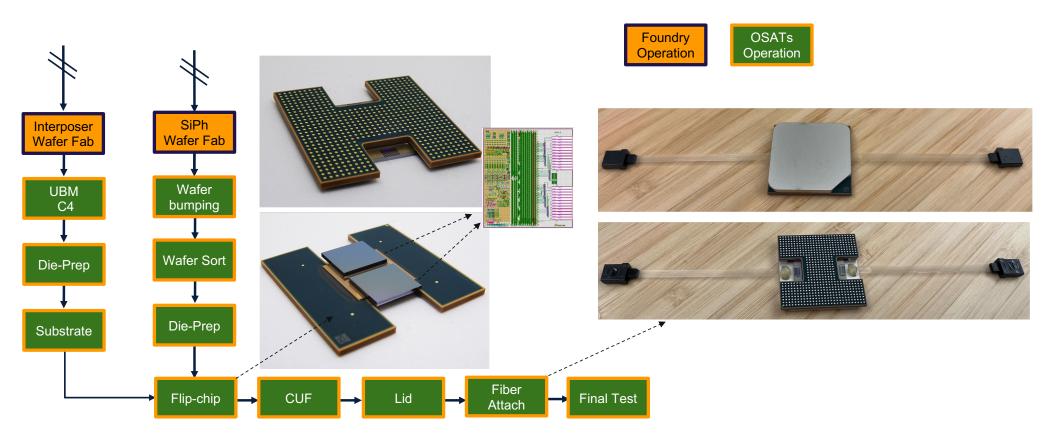
32 - 64 Gbps/λ

8 macros

8 λ / macro

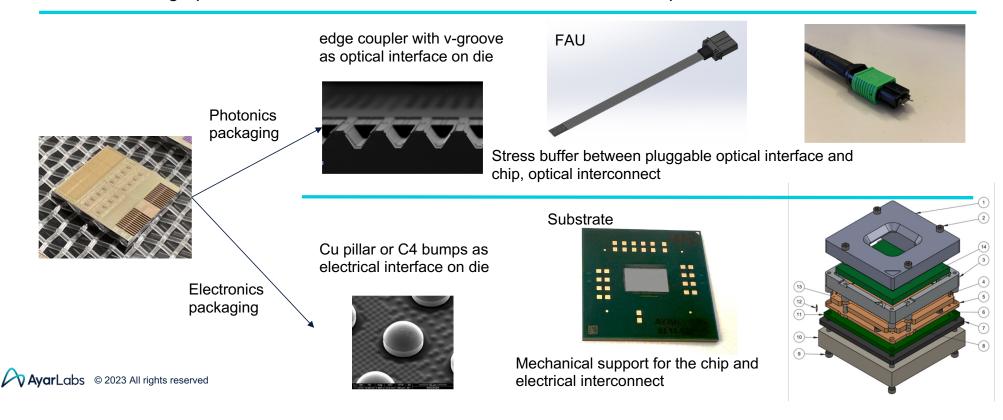
32Gbps/λ NRZ


2 Tbps Chip


Test Vehicle for Silicon Photonics MCP

- Enable an assembly process flow for silicon interposer-based Multi-Chip Packages (MCP) utilizing Cu-pillar, flip-chip, and IOSMF fiber attach.
- Accomplish above objective by demonstrating:
 - GlobalFoundries' 45CLO (aka GF Fotonix) flip-chip with IOSMF, silicon interposer, and Cu-pillar technologies
 - Industry acceptable assembly yield and reliability metrics
 - Demonstrate viable supply chain, including:
 - Chip supplier, Interposer supplier, organic substrate supplier, fiber array unit (FAU), optical assembly, consumables (e.g., Capillary Underfill (CUF), epoxies, etc.)

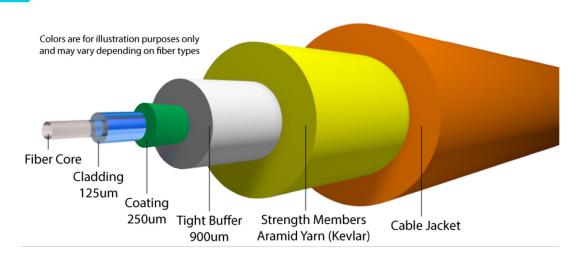
Ref: B. Peng, et al., "A CMOS Compatible Monolithic Fiber Attach Solution with Reliable Performance and Self-alignment," in Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest (Optical Society of America, 2020).

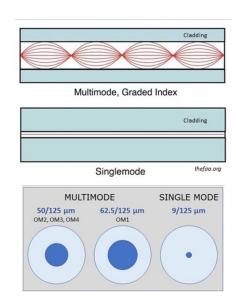


Chip-on-Chip-on-Substrate Process Flow

Optical Assembly Background

- Purpose of photonics packaging: provide optical connection between photonics chip and industry standard optical interface.
 - Existing optical communication infrastructure is based on fiber optics.

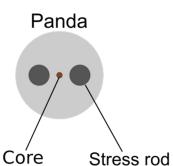

2nd Level Optical Interfaces


Name	Long form	Coupling type	Ferrule dia	Typical Application	Image
FC	Ferrule connector	Screw	2.5mm	Datacom, telecom, measurement equipment	C
LC	Lucent connector	Snap	1.25mm	High-density connections, transceivers	
MPO or MTP	Multiple-Fiber Push- On/Pull-off	Snap	2.5x6.4mm	SM or MM multi-fiber ribbon. device interconnections.	
MT ferrule	Mechanical Transfer ferrule	Snap	2.5x6.4mm	Same as above	
SC	Subscriber connector	Snap	2.5mm	Datacom and telecom (most widely deployed)	

New standard of 2nd level optical interfaces for Optical IO Chiplet:

- Multi-channel (>=12 ch), and compact (can fit within package)
- Pluggable, low loss (<0.35dB) and low variation for repeat mating (10s of mating cycle)
- Low reflectance (<-50dB)
- Solder reflow compatible (260C)
- Resistance to damage and scratch, easy to be cleaned

Optical Fiber for Optical IO Chiplet


Requirement of optical fiber for Optical IO Chiplet

- SM fiber (typical). PM fiber is required for certain device
- Operating Wavelength: O-band (typical)
- Small cladding diameter (<=80um might be needed), tight tolerance (<1um)
- Low cost, PM fiber ribbon might be needed
- · Coating is solder reflow compatible

Polarization Maintaining Fiber (PMF)

Elliptical-clad

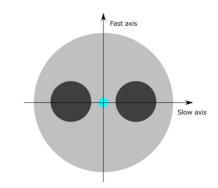
- PM fiber (PMF) has a strong built-in birefringence
- The polarization of light launched into the fiber is aligned with one of the birefringent axes

Key optical characteristics

$$B_{\rm m} = \frac{\Delta \beta}{k_0}$$

 $\mathbf{B}_{\mathrm{m}} = \frac{\Delta \boldsymbol{\beta}}{k_{\mathrm{o}}}$ $\Delta \boldsymbol{\beta}$: propagation constants

$$k0=2\pi/\lambda_0$$


Bow-tie

Large modal birefringence reduces polarization crosstalk, PMFs typically $Bm > 10^{-4}$

$$L_{B}(m) = \left(\frac{2\pi}{\Delta\beta}\right) = \left(\frac{\lambda_{0}}{B_{m}}\right)$$

$$10\log_{10}\left(\frac{P_y}{P_x}\right)$$

1st Level Optical Interfaces

Туре	R&D effort	IL	PDL	Fiber Attach Run rate	Die Prep complexity	Structure stability	Real estate on chip	Scalability	Figure
Grating coupling	Low	High	High	Low	Low	Mid	Large	High	
Edge coupling	Low	Low	Low	Low	High	Low	Small	Low	
V-groove	High	Low	Low	High	Low	High	Large	Low	SiO ₂ Standard fiber 75 um

NOTE: IL = Insertion Loss, PDL = Polarization Dependent Loss,

Optical Adhesive Key Parameters

- High transparency for the wavelength interested.
- Refractive index: match with oxide, or special requirement based on waveguide design
- UV vs thermal cure: UV cure is required to snap cure the component before thermal cure
- Viscosity: specific range is required for dispense and flow control
- Curing shrinkage: less is preferred
- Coefficient of Thermal Expansion (CTE): low is preferred
- Modulus: depends on application
- Moisture absorption: less is preferred
- Adhesive need to survive solder reflow, and reliability test such as damp heat and thermal cycles.

Optical Assembly Tool

Optical source

Optical power meter

Adhesive dispenser

Vision camera

Alignment engine

UV cure head

Base

Control station

Sensors

Automation software

Requirement:

- High accuracy, high precision
- · High throughput
- High integration between alignment engine and sensors
- · Easy to operate and debug
- Low cost, low maintenance, reliable

Summary

- Ayar Labs' TeraPHY chiplet can provide a high bandwidth, high energy efficiency, low latency in-Package Optical I/O for future high performance computing requirement
- Ecosystem for optical assembly of silicon photonics chiplet needs to be developed
- A better standard of 2nd level optical interfaces for Silicon Photonics Chiplet is needed
- Optical fiber requirement for silicon photonics chiplet was reviewed. Low cost single mode fiber (SMF) and polarization maintaining fiber (PMF) with tight tolerance control will be needed
- High throughput, scalable 1st level optical interfaces assembly process is required for silicon photonics chiplet to go HVM. V-groove-based edge coupling is currently the industry preference

Thank You!

AyarLabs.com

COPYRIGHT NOTICE

This presentation in this publication was presented at the **Not Just Chips** (April 4-6, 2023). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

