

Road to Chiplets: Heterogeneous Integration Testability

March 15 & 16, 2022

www.meptec.org

The Changing Nature of Protocol based Testing

Bob Bartlett, Advantest

All Rights Reserved - ADVANTEST CORPORATION

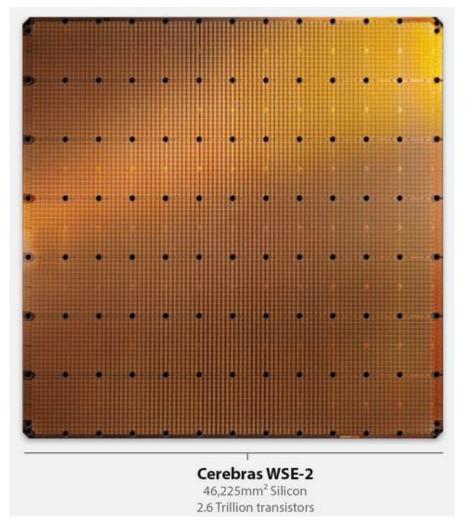
Agenda

- Introduction
- **Test Data Volume**
- **Protocols**
- **Protocols used in Semiconductor Test**
- JTAG/1149.1
- **Evolution of Multi-Chip Integration Technology**
- **Heterogeneous Integration**
- **Paradigm Shifts in ATE**
- **New Test Requirements Drive New Methodologies**

All Rights Reserved - ADVANTEST CORPORATION

- AI/PSV
- **Summary**

Test Data Volume


Semiconductor production facilities made 250 billion billion (250 x 10¹⁸) transistors in 2015 - Dan Hutcheson, CEO, VLSI Research, April 2015

For the CY2021 approximately 1.6x10²¹ transistors were produced.

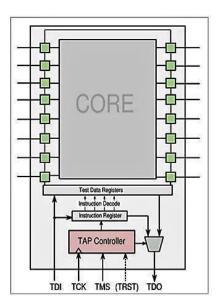
How much data does test generate?

Assuming only 80% of the transistors are tested and each transistor results in just one bit of data, that is >40 Tb per second in 2021..

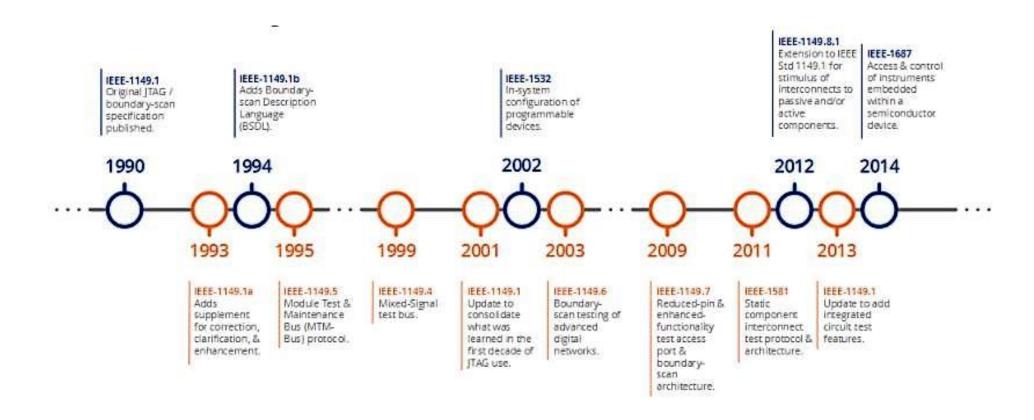
Protocols

Definition

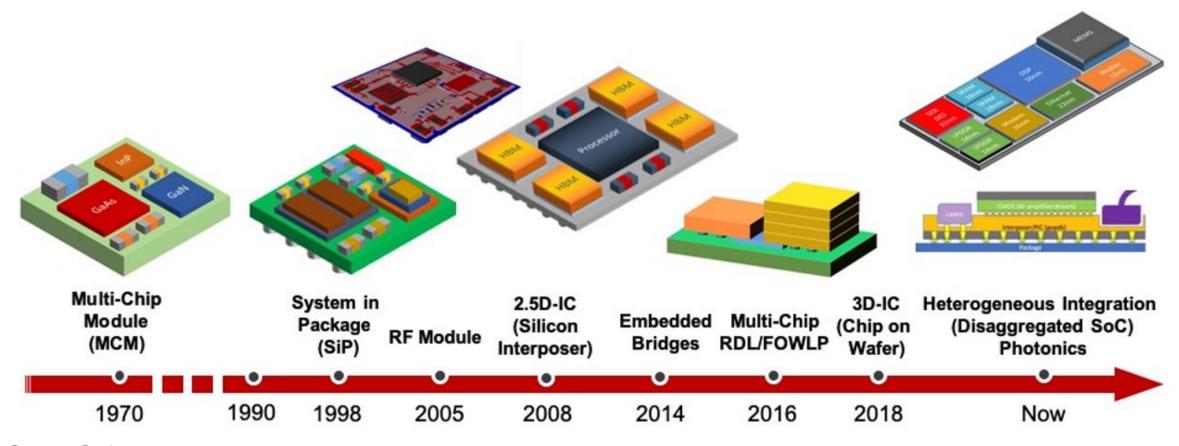
- **Protocol:** Set of conventions governing the treatment and especially the formatting of data in an electronic communications system "Protocol." *Merriam-Webster.com Dictionary*, Merriam-Webster
- Communication Protocol: A set of rules and regulations that allow two electronic devices to connect to exchange the data with one and another
- JTAG: a serial communication protocol and a state machine accessible via a Test Access Port(TAP)


Protocols used in Semiconductor Test

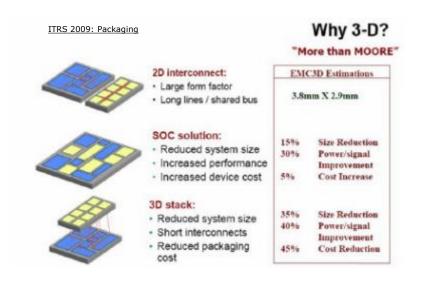
•	UART	1971	2-wire	9,600-1.492Kbps
•	SPI	1980	4-wire	1-10Mbps
•	I2C	1982	2-wire	100K-3.4Mbps
•	CAN	1986	2-wire	125K-5Mbps
•	JTAG	1990	5-wire	1-25Mbps
•	SMB	1995	2-wire	10-100Kbps
•	MDIO	1999	2-wire	100K-2.5Mbps
•	SWD	2003	2-wire	1K-32Mbps
•	USB3.1	2013	2-wire	10Gbps
•	PCIe4	2017	4-wire	16Gbps

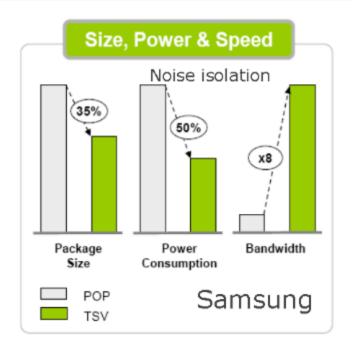

JTAG/1149.1

Joint Test Action Group - IEEE 1149.0/.1 (1990)


- Define a standard of test logic architecture
 - Board connectivity test check for assembly fails
 - Interconnect test
 - Scan chain integrity testing
 - Configuration of functional registers for test modes
 - Configuration of DFT/Structural testing: BS, Scan, BIST, Calibration, Trim
 - DFT execution
 - Device trim mode
 - Flash BIOS & embedded Memories

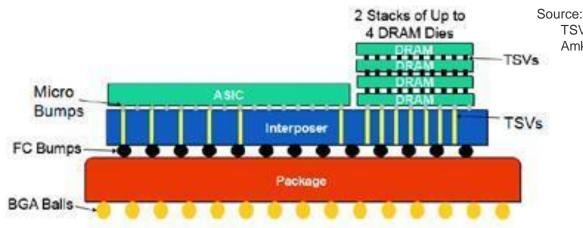
JTAG and Beyond


Evolution of Multi-Chip Integration Technology

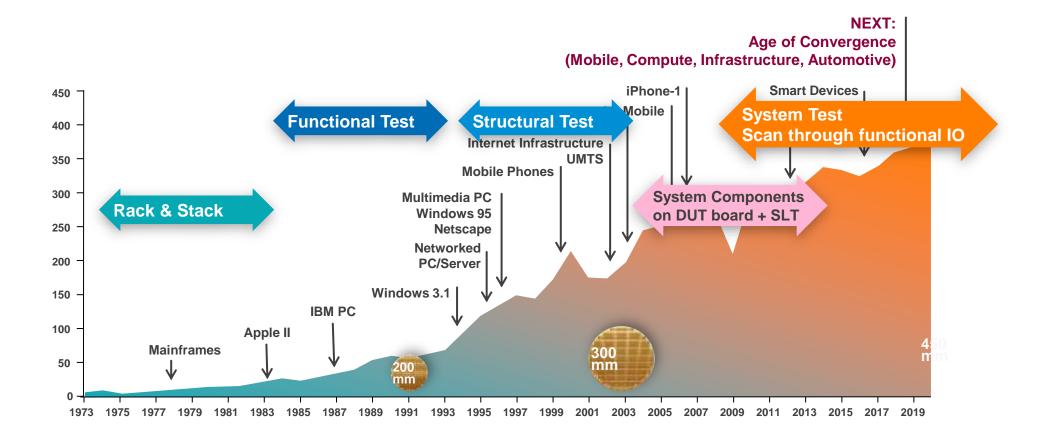



Source: Cadence

- Multi-Chip integration technology has more than 30 years of history.
- What test challenges will the new era of multi-chip integration bring?


Heterogeneous Integration: 2.5 & 3D ICs

Test Implications

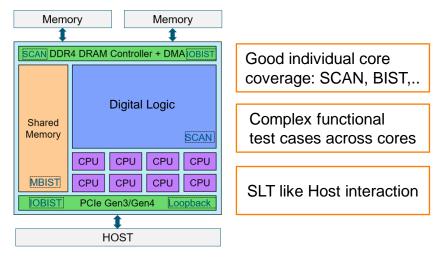

Next Generation Complex 3D Package Architecture

TSV Stacked BGA, Amkor Technologies, Inc

- Limited test access from outside
 - IEEE / JEDEC test access ports
- Test of partially assembled system
 - New test insertion points in manufacturing flow
- Issues
 - Multiple device suppliers how to ensure test coverage for DPPM
 - Test access ports allow identification and debugging of problems, but cannot prevent scrapping of system – yield issue
 - Yield of a combined device is the product of the component yields

YTotal = YPart1 * YPart2 * YPart3 * ... * Ypackage

Paradigm Shifts in ATE


Chiplet Test and Data Impacts

Many aspects of test and data influenced by chiplet-based products

- Larger systems within a package scale the amount of test data up dramatically
- HPC and HIR devices need larger scan and complex workloads for execution on devices
- Known Good Die (KGD) ensure that each chiplet is extensively tested, binned and matched before integration
- Software Defined Functional test content and system level test increasing
 - Electrical failure analysis is more complex and data-intensive
- Need to migrate more test content earlier in the flow
- Detect defective units earlier prior to integration, decrease end of line yield loss
- Requires more correlation work to identify tests at wafer that detect downstream system level failures
- Die traceability
 - Debug, root cause analysis, and die matching
 - KDG and low DPPM require more management, data collection and tracking from origin of each chiplet

New Test Requirements Drive New Methodologies

High integration multi-core architecture

ITRS SCAN pattern volume projection

Software-based functional test

Device boots firmware through USB or PCIe Supporting application software runs on the card

=> Close functional test coverage gap on ATE

Correlation and test content exchange with SLT

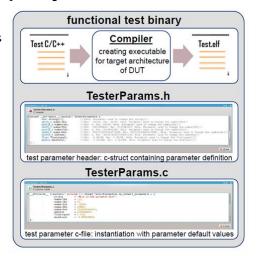
Use similar test content on ATF and SLT Enable correlation and test content re-use

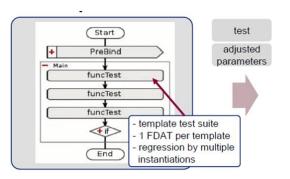
=> Support industry trend for higher quality wafer test

SCAN through functional HSIO

High speed SCAN data transfer through USB or PCIe Supporting result processing software runs on the card

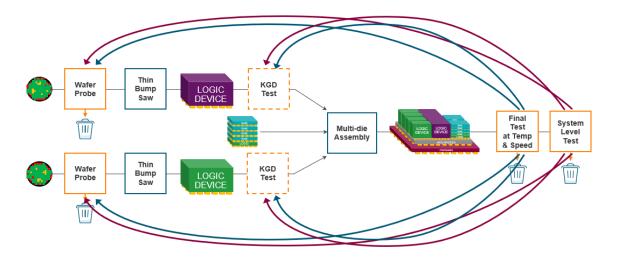
=> Keep test time under control with HSIO SCAN


Chiplet DPPM


Assumption:

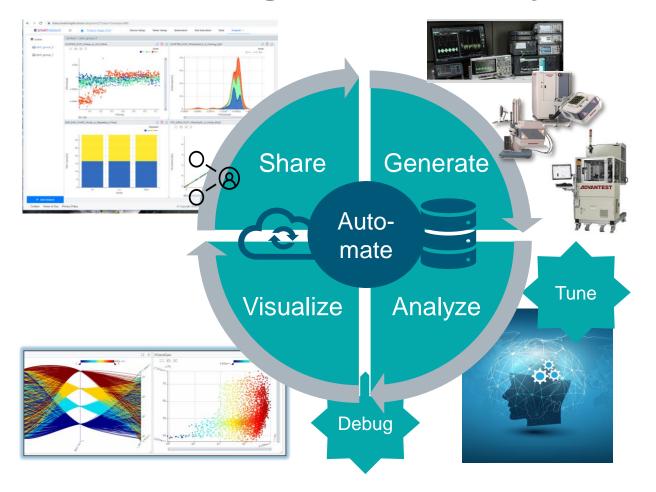
- 13 Chiplets in one package, 1@100dppm, 12@50dppm plus stacked SRAM 12x30dppm
- This results in 100+12x(50+30) = 1060dppm
 → How to provide "better" KGD quality with lower DPPM?

How to improve individual chiplet & overall package coverage:


- Better and more scan types
- Functional tests
- Additional Insertions
- SLT

More Functional, Less SLT possible?

Challenge:


- SLT content is growing
- SLT content is always added, but no measure if still required and/or how to fix (How to back map to design, process, SW..)
- How to bring efficiently test content from SLT to ATE

Potential Strategy:

- Reduce DPPM to range of 100s
- Use advanced scan methodologies and add software defined functional test
- Make SLT an optional step; move test content to ATE insertions

Al-based PSV Manages Complexities of Post Silicon Validation

For RF / mixed-signal / HSIO / PLL, system-level digital, ...

- Automate tedious tasks
- Faster insight / debug
- Efficient communication

Comprehensive, quantified coverage

 Al-based tuning improves yield or performance / power consumption

Multi-Chip Integration Testing for HIR

Heterogeneous multi-chip packaging is a technology in HVM that introduces many new test challenges.

- More test content and HSIO phy testing at probe, package and KGD
 - Protocol usage increases with SmartCompute test instruments
- High power and multi-power domains require PDN design for ATE supplies on critical device power rails
- HSIO DFT support needed for test access over multiple die packages
 - Increasing scan vector data and higher speed behind HSIO pins
- Variety of test functions are needed on a tester
 - Power profiling, DUT firmware, training, calibration and multi-step trim
- Low overhead high volume data collection
 - Edge Machine Learning(ML) for die-matching, extended binning, real-time analytics
- Accurate thermal control required for high quality stable testing
 - Die Level Thermal Control, ATC, Pre-trigger, Fluid cool socket or chuck

Thank You - Questions?

Contact: bob.bartlett@advantest.com

Acknowledgements:

- Dave Armstrong, Advantest
- Ken Butler, Advantest
- Zoe Conroy, Cisco
- Abram Detofsky, Intel
- Martin Dresler, Advantest
- Rich Lathrop, Advantest
- Keith Schaub, Advantest
- IEEE-EPS
- VLSI Research

COPYRIGHT NOTICE

This presentation in this publication was presented at the **Road to Chiplets: Heterogeneous Integration Testability** (March 15 & 16, 2022). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

