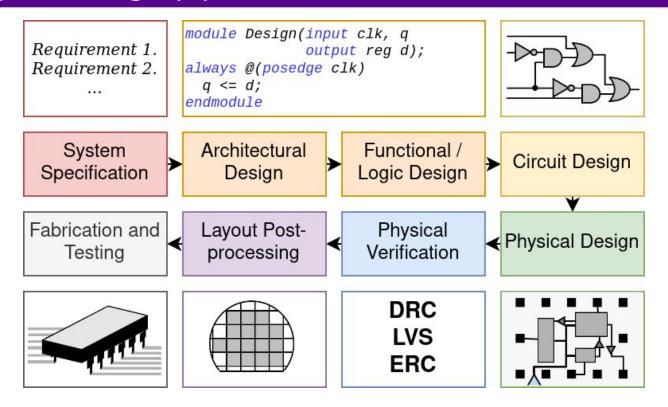
Automating Hardware Design with Large Language Models

Jason Blocklove

June 2024

The Verilog HDL

Verilog used to design digital systems

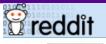

```
wodule Design(input a, b, c, d
output q);
assign t1 = ~b & c;
assign t2 = ~c & d;
assign t3 = a | t1;
assign q = t2 | t3;
endmodule

Verilog Code

RTL Logic Implementation

Synthesis tool (e.g. Vivado)
```

The Digital Design pipeline



Specification → Implementation is hard

2021-2023: ML-written code by Large Language Models

PROGRAMMING comments other discussions (18)

GitHub Copilot · Your AI pair programmer (copilot.github.com)

submitted 2 months ago by violinclipper 3 5 4 9 4 & 14 more

581 comments share save hide give award report crosspost

StarCoder, a New Free Code-Generating Model Alternative to GitHub's Copilot

By IBL News - May 8, 2023

The Verge

GitHub and OpenAl launch an Al Copilot tool that generates its own code

GitHub and OpenAI have launched a technical preview of a new AI tool called Copilot, which lives inside the Visual Studio Code editor and ... Jun 29, 2021

Hacker News new | threads | past | comments | ask | show | jobs | submit

▲ GitHub Copilot (copilot.github.com) 2905 points by todsacerdoti 75 days ago | hide | past | favorite | 1272 comments

TechTalks

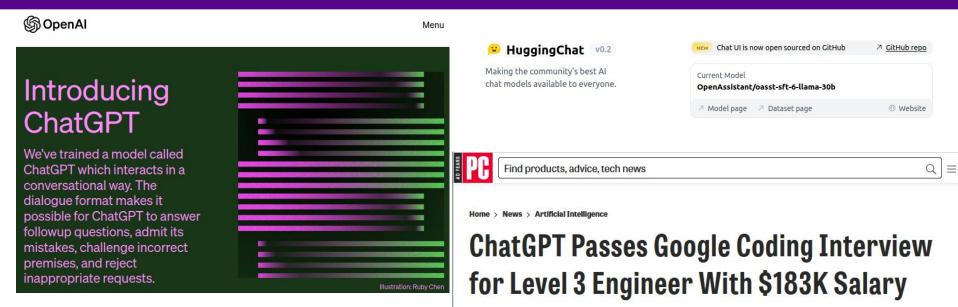
Introducing GitHub Copilot: your Al pair programmer

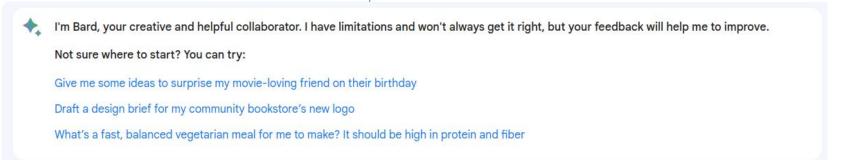
What OpenAl and GitHub's "Al pair programmer" means for the software industry

By Ben Dickson - July 5, 2021

INTERESTING ENGINEERING

Open AI's Codex tool claims to help developers write code faster, better


It can't fix the code when it does not work though.



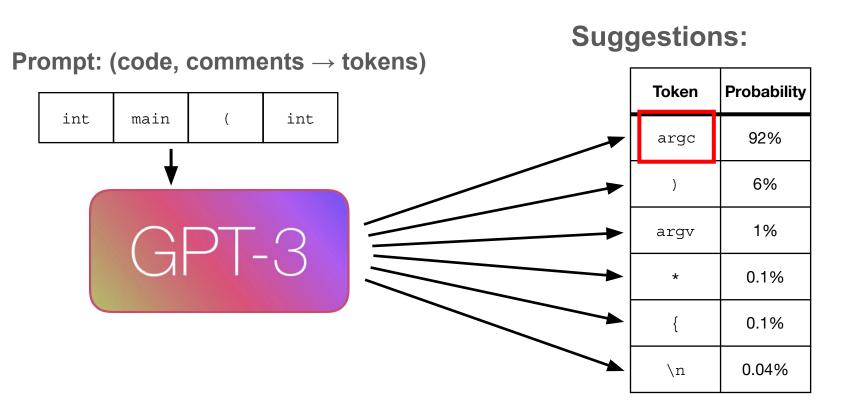
Ameya Paleja

Created: Mar 07, 2023 08:02 AM EST

2022-2023 "Conversational" LLMs

How do LLMs work?

How are LLMs made?


LLMs are trained over large text datasets to "learn" to predict the next tokens

Can you please come here?

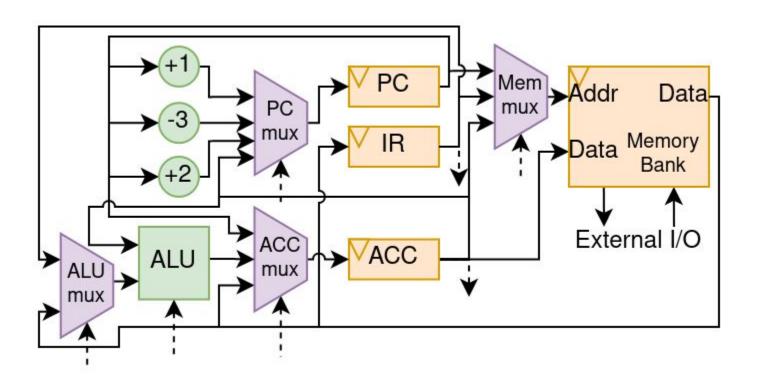
- Can be fine-tuned for specific tasks,
 - o e.g. code-writing:

How do LLMs "generate"? (simplified)

Generating Hardware with LLMs

Verilog-specific LLMs

- DAVE Deriving Verilog Automatically from English (2020)
 - Finetuned GPT-2 over textbook problems
 - Was good with syntax, but had no "creativity" and wouldn't create any new variables
- VeriGen (2023)
 - Finetuned Codex model
 - Trained over a large corpus of Verilog from both GitHub and from textbooks
 - Outperformed state of the art general models at the time


Chip-Chat

- Human feedback (a "conversation") leads to design success
- How complex a design can we go?
- Let's try make an (8-bit) processor

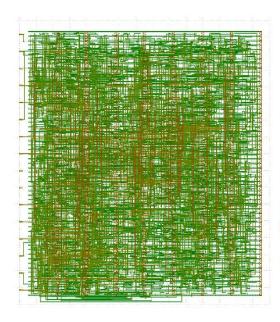
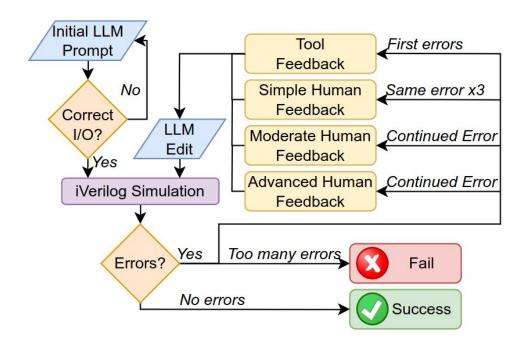

Let us make a brand new microprocessor design together. We're severely constrained on space and I/O. We have to fit in 1000 standard cells of an ASIC, so I think we will need to restrict ourselves to an accumulator based 8-bit architecture with no multi-byte instructions. Given this, how do you think we should begin?

Fig. 10. 8-bit accumulator-based processor: Starting co-design prompt

Cont.	T ID	Tr	# User #		# User	# User	# LLM	# LLM
T. ID	T. ID	Topic	Msgs	Restart	Lines	Chars	Lines	Chars
-	00	Specification	22	10	45	5025	498	44818
-	01	Register specification	6	2	59	4927	91	9961
-	02	Shift registers and memory	5	5	65	5444	269	9468
-	03	Multi-cycle planning and ALU	7	2	103	7284	243	10148
-	04	Control signal planning	13	21	216	9205	414	20364
- /	05	Control Unit state logic	12	11	216	9898	742	21663
-//	06	ISA to ALU opcode	4	0	72	4576	149	5624
7/	,07	Control unit output logic	11	6	266	8632	518	19180
 - 	/,08	Datapath components	12	0	144	5385	516	15646
1-1	/ 09	Python assembler	3	4	127	4231	218	6270
00-//	10	Spec. branch update	1	1	14	1275	15	1635
074/	/11	Control Unit branch update	2	2	98	3743	101	3969
084	/12	Datapath branch update	2	0	25	888	20	726
112	/ 13	Control Unit bug fixing	6	1	190	5413	241	8001
- /	/14	Memory mapped components	7	0	79	3079	516	16237
- /	/ 15	15 Shift Register bug fix		0	38	985	85	2593
124/	16	Datapath bug fixing & updates	6	0	116	2979	128	4613
14	17	Memory mapped constants	4	0	21	849	101	4655
03	18	ALU optimization	1	0	2	98	32	1368
	TOTALS			65	1896	83916	4897	206939

- What we have done up to this point is "chip-chat", talking with the LLMs to generate 100% of our Verilog
- Is this practical?
 - Scalability concerns
 - Third party models
 - Human component
 - Correctness?

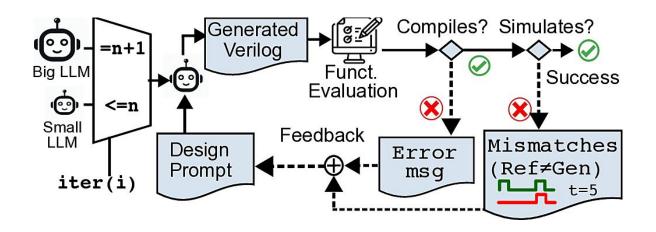

Component	Count
Comb. Logic	999
Diode	4
Flip Flops	168
Buffer	126
Tap	300

Above: (a) Components.

Left: (b) Final processor GDS render by 'klayout', I/O ports on left side, grid lines = 0.001 um.

Evaluating LLMs via "Script"-ed design flows

Structured conversation flow

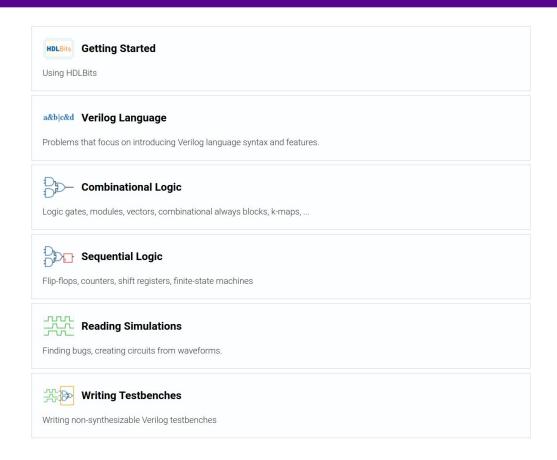


J. Blocklove, S. Garg, R. Karri, and H. Pearce, "Chip-Chat: Challenges and Opportunities in Conversational Hardware Design," Sep. 2023, doi: https://doi.org/10.1109/mlcad58807.2023.10299874.

Donohmoule	Tool Cat		ChatGPT-	4	ChatGPT-3.5				
Benchmark	Test Set	Outcome	Compliant	# Messages	Outcome	Compliant	# Messages		
	T1	TF	/	3	SHF	/	13		
Shift Register	T2	TF	/	9	FAIL	-	25		
ALIEL AND A	T3	AHF	/	15	FAIL	8	11		
	T1	AHF	/	14	FAIL	=	25		
Sequence Gen.	T2	TF	/	4	FAIL	2	7		
	T3	AHF	/	20	FAIL	5.	25		
	T1	FAIL	-	24	FAIL	-	21		
Sequence Det.	T2	SHF	/	9	SHF	X	8		
	Т3	TF	✓	13	SHF	X	8		
	T1	FAIL	_	16	FAIL	2	25		
ABRO	T2	AHF	/	20	MHF	/	15		
	T3	TF	/	12	NFN	X	3		
	T1	TF	/	12	FAIL	-	25		
LFSR	T2	SHF	/	7	TF	/	4		
	Т3	SHF	/	9	FAIL	-	11		
	T1	TF	/	4	SHF	X	8		
Binary to BCD	T2	NFN	/	2	FAIL	2	12		
	Т3	SHF	/	9	TF	X	4		
111	T1	TF	/	4	FAIL	-	25		
Traffic Light	T2	SHF	/	12	FAIL	*	13		
	T3	TF	/	5	FAIL	-	18		
CONT. (01) 1 (1) (1)	T1	SHF	X	8	MHF	X	9		
Dice Roller	T2	SHF	/	9	FAIL	5	25		
	T3	SHF	X	18	NFN	X	3		

ChatGPT4 Passes most tests with only tool feedback

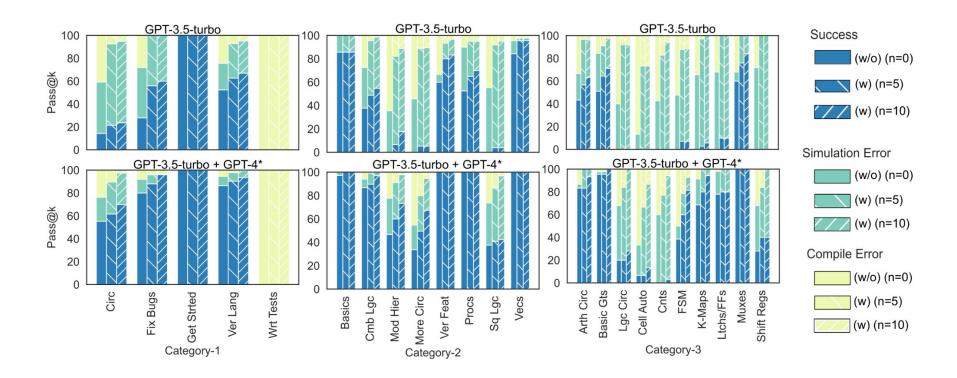
Automating the process

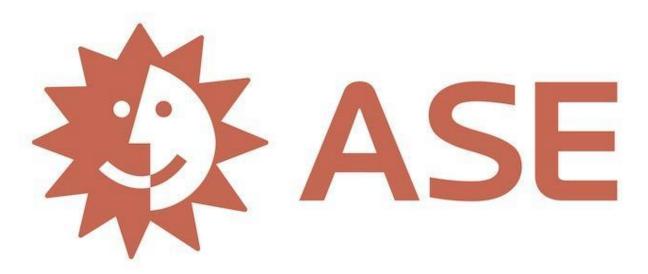

- Human feedback is nebulous and costly, can we reduce it?
- Can LLMs understand tool feedback if the testbenches are explicit enough?

S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri, "AutoChip: Automating HDL Generation Using LLM Feedback," arXiv.org, Nov. 08, 2023. https://arxiv.org/abs/2311.04887 (accessed Mar. 26, 2024).

Benchmarking

HDLBits


- A website for teaching Verilog
- Selected 120 prompts from different categories


Results

		Success (%)				Simulation Error (%)					Compile Error (%)			
Feedback Type	Metric	LLM	(w/o)	100	(w)		(w/o)	190	(w)	,	(w/o)	3.7	(w)	
			n=0	n=1	n=5	n=10	n=0	n=1	n=5	n=10	n=0	n=1	n=5	n=10
7		Claude 2	32.50	37.50	44.17	47.50	36.67	46.67	54.17	50.83	30.83	15.83	1.67	1.67
	Pass@1	GPT-3.5 (G3)	26.45	30.00	35.00	37.50	40.50	50.00	55.83	57.50	33.06	20.00	9.17	5.00
		GPT-4	60.83	69.16	81.16	-	19.16	18.33	12.5	-	20.0	12.5	7.3	-
		G3+GPT-4*	57.05	85.14	87.15	75.18	20.42	8.84	9.24	20.96	22.53	6.02	3.61	3.86
Succinct		CodeLlama	35.29	36.21	36.21	36.21	20.17	20.69	20.69	20.69	44.54	43.10	43.10	43.10
Succinct		CodeLlama+GPT-4*	58.25	62.53	62.53	62.53	29.21	31.41	31.41	31.41	12.52	6.05	6.05	6.05
		VeriGen	27.35	1070	(5.0)		12.04	-	177.0		60.60	-57		5
		Claude 2	32.83	38.58	45.35	47.38	40.83	48.39	50.42	50.08	26.33	13.03	4.23	2.54
	Dogg@5	GPT-3.5 (G3)	27.27	31.17	36.00	39.00	37.69	49.33	55.50	54.67	35.04	19.50	8.50	6.33
	Pass@5	GPT-4	63.16	70.40	84.45	-	19.00	21.9	11.53	-	17.83	7.68	4.00	-
		G3+GPT-4*	81.06	65.39	72.84	89.19	7.49	24.14	22.94	7.77	11.45	10.46	4.23	3.04
		CodeLlama	34.29	35.71	36.59	36.59	18.82	21.43	22.47	22.47	46.89	42.86	40.94	40.94
		CodeLlama+GPT-4*	70.30	74.50	74.75	74.75	20.63	21.37	21.16	21.16	9.03	4.11	4.07	4.07
		VeriGen	27.82	0.70	(7.0)	-	10.02	-	1570	-	62.16	-		5
3	Pass@1	Claude 2	31.67	33.33	41.23	42.11	36.67	56.14	54.39	54.39	31.67	10.53	4.39	3.51
Full		GPT-3.5	26.67	30.25	34.45	36.13	33.33	43.70	53.78	52.94	40.00	26.05	11.76	10.92
	Dogg @ F	Claude 2	32.50	36.71	42.48	44.23	38.67	48.95	51.57	50.70	28.83	14.34	5.94	5.07
	Pass@5	GPT-3.5	28.00	30.47	34.51	36.36	35.67	48.82	56.06	55.39	38.33	20.71	9.43	8.25

Results

Thank you to our sponsors!

ASE is enabling the heterogeneous integration and chiplets era through VIPack™ while delivering sustainable advanced packaging innovations for...

AI | HPC | Data Center | Automotive | 6G | IoT | and more.

COPYRIGHT NOTICE

This presentation in this publication was presented at the **AI for Semiconductors** (June 12-13, 2024). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

