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Converging Trends Creating an Opportunity

Increased Data
Science Expertise

Affordable, Scalable
Cloud Computing

Haraware | GPUS Opportunity

Growing demand for
Al/ML/GAI

TERADYNE a ATE vendors offer

Atchimers Advantest real-time infrastructure
Cloud for Al/ML

Solutions™
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Edge (and Cloud) Al Examples
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Outlier detection Escape prevention Optical defect detection RMA reduction / Parametric trend
(Advanced) (Equipment Health etc.) / ROI quality (e.qg., prediction detection
welds, soldering etc.)
Al based RCA Waveform anomaly Battery analytics Process optimization Early failure detection

detection (capacity, smart pairing, (e.g., Adaptive

etc.) manufacturing)
eaad, ll]uun 2N

Process variation
detection

AN

Equipment
utilization/variations

Yield trend detection Wafer classification
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Predictive / JIT
maintenance

J I0: iC

Scratch detection
(wafers)

/N

Monitoring and auto
RCA (UPH, cycle time,
yield, error code
distributions etc.)

Parametric insights

3

Next operation reduction

{03 =

IS

Test (program)
comparison
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Scratch Detection

= Uses deep learning (DL)

wafer_name | operation | yield_before | yield_difference | yield_after | LastUpda .

= = = = algorithms to detect scratches

M88563_14 | P2X 93.17% 0.00% saary | 2022072

M88563_15 | P2x 91.85% 0.00% 9185% | 2022072 Mark size u Au to m a‘ti Cal |y S u g g eStS I n kl n g —

M38563_16 | P2X 92.86% 0.00% a286% | 2022072

M88563_17 | P2X 92.33% 0.00% azgan | 5020072 Scraps Suspect d IeS arou nd the

M88563_18 | P2X 93.49% 0.00% sasgn | 2022072

M88563_19 | P2X 92.59% 0.00% azgen | 5022072 S C ra.tC h

M88563_20 | P2x 93.07% 0.00% sso7% | 2022072

M38563_21 | P2X 9270% 0.00% sa7o% | 5022002 - I m p roves Ove r ti m e g ive n u S e r
=2 = o= = om o

M88563_23 | P2X 92.59% 0.00% azgen | 5022072 fe e d b aC k

M88563_24 | P2X 73.07% 0.00% 7a07% | 2022072

M288563 25 | P2x 91.27% 0.00% st27% | 5022002

Lot Page |- | # | orag | Clearinking | Clear Scraicnes | v I FX o]
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Preventative Maintenance Using Waveforms

Al-based alerting on anomalies

= Multivariate
Holistic view of the waveform

baseline vs predict

= Minimal configuration " Normai Wavefom
Automatic identification 01 D s
and extraction of relevant features i
& 00
* Feedback loop
-0.1

Improves with user feedback

2016-10-07 2016-10-12 2016-10-17 2016-10-24 2016-10-29 2016-11-06 2016-11-11 2016-11-22 2016-11-26

02
01
Train Waveforms Automatic fit
Model Baseline —_— feature —_— ML
extraction model £ 00
=01
Automatic predict Anomaly Feedback
Predict New . feature —_ ML —_— or — 7Q(Q+
Waveform extraction model Normal ) 2016-11-24 22:59  2016-11-2522:59 2016-11-26 22:59 2016-11-28 14:05 2016-12-06 14:59  2016-12-06 22:59
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Next Operation Optimization / Lean Coverage

SFR Fail model SFR Pass model

Predict units that

will fail

: Final
Imager Curing :
[ SMT ] —> [Assembly] —_—> [ CMAT ] —_— [ oven ] —_—> [ PCT ] —‘—P [ Module J —tp

Spatial Freq.
Response
Assembly (SFR)

MTF Scores * Cure Time * MTF Scores » Screwdriver

» Corner height » Screwdriver . * MTF Scores
for the image » Torque * Pre-Comp » Oven Position » Torque
sensor * Angle » Epoxy Batch : * Angle
mounted on * Drive time  Pallet * Drive time
the PCB (from » Depth * Line * Depth
AOI) » Screw Batch * Line
* Line * Nest
* Nest
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Implementing Al
at the Edge

It sounds like a great idea — what’s preventing
It from happening?




The Full Machine Learning Lifecycle

Train a model
with data and
evaluate
business value

Understand
changes and
update
model/process

o Adapt Validate

Deploy and act
upon the model

Monitor data and
model
performance to
identify changes

&
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ML Challenges

Learn

« Getting data
Data scientists waste
time getting and
organizing data

* Feature extraction
It is difficult to extract
complex features from
the data set

* Freedom of choice
Data scientists want to
use their favorite tools
and the latest-and-
greatest algorithms

ni.com

« Complex “plumbing”
Data scientists waste
time dealing with the
“plumbing” associated

with getting a model into

production

« Actionability
Taking action requires
integration with
equipment and systems

* Distributed mfg.
Issues compounded in
distributed, outsourced
mfg.

Validate

* Ongoing validation
Production models
need to be validated all
the time

 Ongoing data
collection
Data collection
becomes an ongoing
concern

« Technical debt
Data scientists end up
spending time
monitoring “old”
projects instead of
Investing in new ones

« Stale models
Production changes
inevitably cause
models to go stale

« Human-in-the-loop
Users need to review
the results of a model
and provide feedback
to fine-tune it

* Relearning
Model relearning is
often manual

&
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Hidden Complexity - the Google View

It’s all
about the

Infrastructure

ni.com

Configuration

Data Collection

Feature
Extraction

Machine
Data
L Resource
Verification
Management
ML _
el | Analysis Tools
Process
Management
Tools

Serving

Infrastructure

Monitoring

Source: Google article from 2014: Hidden Technical Debt in Machine Learning Systems
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
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https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Global Operations - “GO” - Architecture

Edge (factory floors)

Fab Assy. Tester Tester Tester Other equipment & +0 +0 +
data data A B C data sources o= o= P
O+ O+ O+
0
R S 1 I
S o 8 o 8 o 8 o 8 o Ss S 7
5% 83 &3 S 5 S 5 S S g
< < < < < 5
Vbl L L :
<
ag ¢—Data— _ .
(&3 —Action— @ O+ edge analytics @ O+ central analytics Cloud or
Control 200 (e ereaion & ovd e Lo - 24x7 ule execution & orchestration S
Room-+ G O+ data platform AU (== 0+ data platform
Factory A —J Edge repository Central repository

(internal or outsourced)

Factory B

Factory C

Actionable insights across all manufacturing and test processes

4
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Optimal+ GO - Comprehensive ML Operations

Fab Assy.

data

<«—Data—
CR —Action—

Control

Edge (factory floors)

Tester Tester Tester Otherequipment &
B C data sources

H
-.E+
°
E

+«—Data— J]
=]
—Action—
Data—
—Action—
<+«—Data—
e Action -+

-—

O+ edge analytics
24x7 rule execution & orchestration

Room+ O+ data platform
N— i
Factory A t— Edge repository
(intemal or outsource:
Factory B
Factory C

O+ central analytics
24xT rule execution & orchestration

==| O+ data platform

o

Configuration

Data Collection

Data
Verification

9 ©

Mgmt.

Central repository

ni.com

Optimal+ covers the full scope all the way through ML deployment

12

Feature
Extraction

Analysis Tools

Machine
Resource

9.9

Monitoring

&

Process
Mgmt. Tools

Serving

Infra-
structure

G
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Feature Extraction

.A .A
Jupyter jupyter

v v
Data Science ® Feature reduction K«
engineering features

* Interactive flow
* Normalization

Raw features

Domain-driven
engineering features

Product data Interactive flow

» Wafer geography

* Machine data * Cycle time « Bucketing * Advanced feature

) TeSt an.d * Yield * Group level features reduc_tlon
inspection data « Custom domain . Embeddings techniques

 Process data . features « PCA

- Images/Scans | - Derived welding « SHAP values

» parameters analysis (Model
Explainability)

Machine

Engineering features benefit ML models but require domain expertise. ” e iy
. . . . onfiguration Data Collection : erving Infra-
The platform saves time by contextualizing data into ML-ready comaual = e
nalysis |00IS

datasets and calculating domain-specific features.

Feature
Extraction

Process
Mgmt. Tools

&
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AutoNML

Data Extraction x
Notebook :

M| Testl.ipy
M| TSFresh-
®| TSFresh.i

Simple A
Example.

R 5LE DEMO. Databsicaciionic® 8
B+X00»rw.

Data Extraction Notebook

Load data from TDMS files to SLE for using in Auto ML
App

+2 oells ion

Download the files specified by the input parameters and store it locally

+2 cels isden

|
i

I

P

{

kG

v

F

GG

§

§

i

P 0t
R e
D e o 11128 354 ¥ b

[IEINE TN I T N A T T I I )
om

T o A

Generate
Data

ni.com

RO Welcome to NI-AutoML

This application performs ML-based prediction.

ONI Pabutainsdr, _ape

AXNIIE DEIAL) e ezt )i Tl

D

/

+

X

MAI-H-NIALipynb

Create local copy
Edit
Publish to AutoML

Unpublish notebook

Open
- AutoML

AutoML Train Models

14

Q88 Rombat Workspace / AutoML Waveform Prediction Infer... # 3 weadde | B @ Olasitbhows - & @ - @
| T Fie chart
- Timestamp unit Pregict

Predict

1 - ®

AutoML
Deploys
Model ;

5 Halp

SLE DEMO-DitaEstractionNe X

Ja+x00rmcw e B

# SLE-DEMD-Blizs-AutoMUWm X % SLEDEMO-AutcMUWaveforr X [ Terminal 1

AutoML Waveform Prediction Inference

Download the file specified by the input parameters and store it locally

Custom App server

+1 0t higgen
AL Exampleipymb

Load the data from the file into pandas for analysis

+18 cols hidden

Store the result information so that SystemLink can access it

AutoML-based
oo prediction

| Ly R

e Notebook

docker

d=)

&
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Edge Inferencing using Rules

Ml Edit Rule - Scratch detection ML step 1 - SORT1 - = IES

Model registry

Script Timeout (minutes)
2 ]

Deactivated Rule
Scratch detection ML step 1 - SORT1 !
Popuaton [ Canfuraton Custom App server
J— i ~
Ll l-
Rule Mode: Operatians [ ) RTINS
Sources: SORTL |- Python Server Configuration | oplus-python 3.6
Output operation name: VOP_Ws Python Script
- import pandas as pd
Debug Script
docker
‘ Steps B || Flow steps import json Step properties 5
Analytics Library & i . . Bk 2l
_ * Sariptwith 5 step(s). product_name= input['Product] E——AIZ — 'F.:
gorithm
==‘ url = 'http://172.7.5.86:5050/ customapp/scratchDetection_app_1/axis_directions?token=jkjkjkjkjkjk33&product=product_name' Settings : Click —» jupyter
........... =T vtoad From Optial Plus Data Saurce: ULD_ response = requests.get(url) - T
% jdata = json.loads(response.text) jon Scri import pandas ... L
Data if len{jdata) > 1: —/ Python Serv... oplus-python-3.6 -
........... @ 2-Merge from extract parameters= pd.DataFrame(jdata)
H Q H
e k e ? d = {'Probing_Y_Direction": [1], 'Probing_X_Direction': [3]} oy
"""""" SECREEE Sl parameters= pd.DataFrame(data=d) \ c u St[}m E r mUd EI
B BB 0 S |
.
% EIII ........... =] 5virtal Test g
]

Input Parameters
Data Cleansing o %
0

Python Script
E Type Name Source Additional Selections v P
b | Table v | input DiceDataTable

jon ———————————
Output Parameters +

3 X

Minimum rate of assigned bins (%) ]
Put wafer on hold Type Qutput Table Column\¥ariable Name

Maximum rate of assigned bins (%)
» | Table v | parameters
— Actions
Engineering alarm: o

Cancel @ Pending Approval | | Activate Cancel Data Machine

Monitorin
Verification REECLIEE g
Mgmt.

Rules trigger model inference at the right time with the right data Configuration D3t@ Collection Serving Ifa
Feature engineering utilizes Sequoia reusable automation Analysis Tools

Feature

Flexible options for model execution runtime Extraction Mg, Tool

+
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Monitoring an AutoML App

VEUEE

Monitor Files
Human In The Loop

2 onitoring 07_01_2024 ~

S « Automatically identify
Monitoring Model | 2024-01-07 | Version 1 deteriorating model results
Mg  Relearn on latest data to
S I S O Improve model

75 Days

Cut Of Distribution e HITL corrections A Fails Safety Filter e
Pass Successfully! A Failed Pass Successfully!

Threshold 00D Score Threshold HITL corrections Threshaold Fails Safety Filter

65.0% 10.0% 20.0%

00D Score HITL corrections percentage Fails Safety Filter

52.0% 17.0% 3.0%

A -12.0% A 7.0% J -17.0%

i Note|An opportunity to update the production model has been identified
Data Machine
1 . R Monitorin
New model details _ Verification EAS;:]:CG g
Configuration Data Collection Serving Infra-

Score On Test Data: Score On New Data: structure

Analysis Tools
0ld Model Scare Hew Model Scaore 0Old Model Score New Mode| Score
98.0% 96.0% 91.0% 99.0% Feature Process

¥ 2.0%  8.0% Extraction Mgmt. Tools

Replace The Production Model

+
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|
uman-in-the-Loop

Improve model while gaining user confidence

Human-in-the -loop
Wafer sort App Expert

Suggested Classification
: v
< Final decision E { S Reviews some (or all) Al decisions

based on algorithm confidence level
From 100% human control &

feedback — down to sampling only

sdew Jajepn

0 Evaluate9 Final Ink map N 32
—

—

) MES

Optimal+ DB -
Origing
m&
Al Engine

&
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The Full Machine Learning Lifecycle

Learn

» Getting data
Data is collected and
harmonized all the
time, making it
available at the click
of a button

» Feature extraction
Advanced features
are extracted via out-
of-the-box capabillities
(e.g. geographic and
parametric outliers)

* Freedom of choice
Full support for data
science platforms

ni.com

Act Validate

e Stale models
Automated rules
detect when models
are going stale and
can even disable
them if needed

« Complex “plumbing”
Plumbing is handled
under the hood by the
Optimal+ infrastructure

* Ongoing validation
Standard rules
monitor ML models
for excursions

» Actionability
Integration with
equipment and
systems is part of the
Optimal+ deployment

 Ongoing data
collection
Data collection and
harmonization is
already fully
automatic

« Human-in-the-loop
Users can browse
results and provide

feedback directly
 Distributed mfg.

Optimal+ is deployed
across the entire mfg.
ecosystem — internal

and outsourced

* Technical debt
24X7 monitoring frees
data scientists for
their next project

* Relearning
Model relearning can
be partially or fully
automated

&
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What’s Next for Al

at the Edge




NI Global Operations

|
Real-time Application Enablement Layer (DIY & Canned models)

Ed e, Nexus’ & UltraEDGE &
ADVANTEST@ J ACS TERADYNE Archimedes I1 l (Stan d al O n e)
Test Floors
Testers Edge Servers Central
Test throughput, speed, and Data ingestion, monitoring and Big data observability, insights
consistency action control and model creation
== e e
. Model Execution Model Execution
—1 — - -
— iciency
Yield
Quality
-
Real-Time Execution Q —

Data, Models, Actions, Monitoring, Etc.

&
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Thank you to our sponsors!

THE NEXT GENERATION

mkor

Technology®




ASE is enabling the heterogeneous integration
and chiplets era through VIPack™ while delivering

sustainable advanced packaging innovations for...

Al | HPC | Data Center | Automotive | 6G | IoT | and more.

€3 @aseglobal m @aseglobal @ aseglobal.com
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