
Copyright 2020 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary 
property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, 
reproduced, altered, or used for any purpose without the express written consent of Baker Hughes.

Florian Knigge & Alexander Suppes

Finding the Needle in the Haystack
on the Use of AI in Defect Analysis

June 13th, 2024



Baker Hughes Confidential
2 Copyright 2019 Baker Hughes Company. All rights reserved.

We’re Waygate Technologies.
Your partner for industrial inspection solutions. 

o Global leader in non-destructive testing solutions
o Ensuring safety, quality 

and productivity for over 10,000 customers 
worldwide

o 125+ years of NDT experience
o Driving insights and innovations from data
o Making sure that cars start reliably, planes fly 

safely, and phones turn on smoothly. Every time.
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Why inspect?

Recognizing defects

Automating the analysis - how is it done?

ADR, AI, ML and Neural Networks

Let’s make it practical

Case studies

Wrap-upFl
ow
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In-service:
• Life
• Integrity
• Reliability

NDE/QC:
• Cost
• Structural
• Material defects
• Dimensional/Metrology
• Mfg. equipment trending

ACQUIRE
inspection data

ANALYZE
to gain insight

ACT
on insights

In general:  Greater risk, greater desire 
for inspections (quality systems)

Examples:  failing airbags, blown 
aircraft engines, burning EV’s

• Make things better, faster
• Improve performance, life

Waste and risk 
reduction

Implementation 
cost

Why inspect?



Interpreting non-destructive data

Logistical challenges facing NDE
✓ Resource burden:  skilled, certified
✓ Cost and perception
✓ Aging workforce
✓ Need for speed
✓ Data retention
✓ Data flow

Technical challenges of NDE
✓ Human performance
✓ Tech Plans, Maintenance Manuals

ACQUIRE
inspection data

ANALYZE
to gain insight

ACT
on insights

Automated Analysis:
Benefits:
o Speed
o Quality
o Resource
o Comprehensive: NDE 4.0

Considerations:
o Scope
o Performance
o Quality system
o Automate or assist? 
o Timing
o Data
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o Integration
o Validation and 

acceptance
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Our history of ADR...

Visual ADR
Still and video image based 
ADR
X|approver
ADR for consumer battery 
defects
InspectionWorks
Cloud-based data ADR and 
data mgmt.

Speed|ADR
High speed 3D ADR for 
helically scanned CT 
part

Seifert SABA, 
world’s first 
commercial X-ray 
ADR…
Automatic 2D ADR for 
auto safety parts

Phoenix X-ray XE² 
ADR targeting 
electronics… 
Extensively adopted 
and used for PCB 
/solder ball inspection

19
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Waygate Technologies has been a pioneer in enhanced inspection 
techniques for 125 years and has evolved ADR for the last 30 years, 
starting with rudimentary rules based and pattern recognition 
techniques through to the most sophisticated machine learning and AI 
enhanced algorithms. 
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Relevant questions to consider:

• What does your data look like?
• Has acquisition been optimized?
• Detection entitlement? 
• Challenge of detection task?
• Knowledge of defect scope / impact?
• Binary? Regional dependencies? 

7

Outcome restricted by your input (GIGO)
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AI-specific:

• AI = data
• Capture all defects?
• How frequently encountered?
• What is current and desired performance?



Detection Approaches:  AI, ML, and DL
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Rules-based morphology
• Pros: Predictable, understood, lower data 

dependency, allows regional variations
• Cons: Potentially slow, need for descriptive rules, 

‘fixed’ solution

Statistical/Correlation
• Pros: Predictable, straight-

forward
• Cons: Data dependency; false 

call risk upon changes in data

CNNs, FFNNs, …
• Pros: Easy to apply to variety of detection tasks
• Cons: Data dependency, false call risk, not 

common for regional variation
• E.g. layered CNNs, YOLOvX, FFNN’s, …

Unsupervised approaches
• Find anomalies

• Addresses annotation burden

Dictionary Learning
• Model-based anomaly detection
• Pros: Predictable, Fail-safe
• Cons: Data dependency

Generative Adversarial Networks
• DL comprised of two networks that try to outdo each other

• Promising

• Reduce data dependencies

Auto-encoders
• Model-based anomaly detection
• Pros: Predictable, Fail-safe
• Cons: Data dependency

Background Subtraction
• Pros: Simple

• Unstable to changes, lower performance

Principle Component Analysis
• Dimensionality reduction based

Support Vector Machine
• Aimed at classification

AI
ML

DL
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Simple network:

Neural networks:
• Input, output, and hidden layers
• Layers of nodes
• Combinations and weights
• Analogy to neurons

Input 
layer

Hidden 
layer

Output 
layer

Var 1

Var 2

Var 3

Var 4

Output

Classification example:

"THE MNIST DATABASE of handwritten digits"

Input 
layer

Hidden 
layer

Output 
layer

Var 1

Var 2

Var 3

Var 4

Output

How would you design software to 
recognize handwritten characters?
• Image matrix
• Limited output
• Variation on input
• Convolutions

Neural Networks

http://yann.lecun.com/exdb/mnist/


Impressive performance

Human level
Deep Neural Network

Shallow Neural Network

Traditional Machine Learning

Volume of labeled data
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random

Neural Networks
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Magic in stacking networks, e.g.: 

Input Output

encoder decoder
-
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Let’s make it practical… almost
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Performance Concepts: applicable to any inspection modality

Data Preparation
Data 

acquisition
Data 

augmentation
Data 

annotation

Deep Learning
Model 

training
Model

Evaluation

Inferencing
Object

Detection
Instance

Segmentation

Inspector

D
oubly-review

ed

…

AD
R

GT

IN
SPEC

TO
R

TPR

GT estimate

IN
SPEC

TO
R

FN
R

AD
R

TPR
AD

R
FN

R - +
-
+

TN FP

FN TP

PREDICTOR

GT

DID WE GET IT?BEFOREHAND:

• GT
• TPR, FPR
• IoU



Let’s make it practical:  Using ADR

Validate performance (inferencing): 
• Detection rates:  ROC charts
• Cycle time
• Failure modes
• Stability
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X

TPR

FPR

1

0

Impact on NDE: 
• Perception across roles: business, quality, NDE 

personnel
• Excitement and fears:  transient & expectations
• Big-picture:  NDE 4.0 – feedback loops, lifing, etc.
• Increased quality and expectations
• Impact to inspectors
• Capture of information (“blockchain”)
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Let‘s make it really practical:  
hardware engineering examples

• X|act:  Wire Sweep

Defects to be identified
• Short wire – short distance between two wires

• Messy wire – wire with unexpected position

• Residual wire – odd or unsuspected wire

• Wire sweep

• X|act: Voiding Calculation (VC)

Features to be evaluated
• Total voiding (%)

• Big voids (%)

• Die tilt (°)
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Let‘s make it really practical:  
hardware engineering examples
• X|act:  Ball Grid Array (BGA, µBGA, FC)

Features :
• Form deviation
• Position offset
• Area deviation
• Missing balls
• Voiding (%)
• Diameter

20x time-lapse film shows reflow process.  

Injection 
molded 
plastic 
part

Acquisition:
100 kV
500 µA

48 µm/px

DXR250RTE 
detector

• Measurement of an angle from side view
• All structures of the part are overlaid in the X-ray 

image
• Automatic measurements with flexible, programmable 

X-ray image evaluation routines (XE2)

• X|act:  Geometric fitting



Let‘s make it really practical:  Teachable ADR
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X|approver:

AI software 
platform for 
X-ray and CT



Let‘s make it really practical: 
X|approver for battery inspection

16

Electrode Range/Tolerance

Battery Overhang
Overhang

Bend Angle
Overhang
Tolerance

Volumetric
Registration

Overhang
Exit Angle

Align volume 2D & 3DCathode and anode position Measure Anode angle, Highest 
Cathode length neighbor

Measure Anode Bending angle
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• Inspections / Measurements for QA
• Assisted/Automated Defect Recognition
⎻Defects
⎻Anomalies
⎻Measurements

• There is more to ADR than DL
⎻AI/ML/DL
⎻ Performance Metrics
⎻ Impact

• Novel AI has opened the door to exciting applications in 
NDT

17

Take-home message
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Thank you to our sponsors!
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