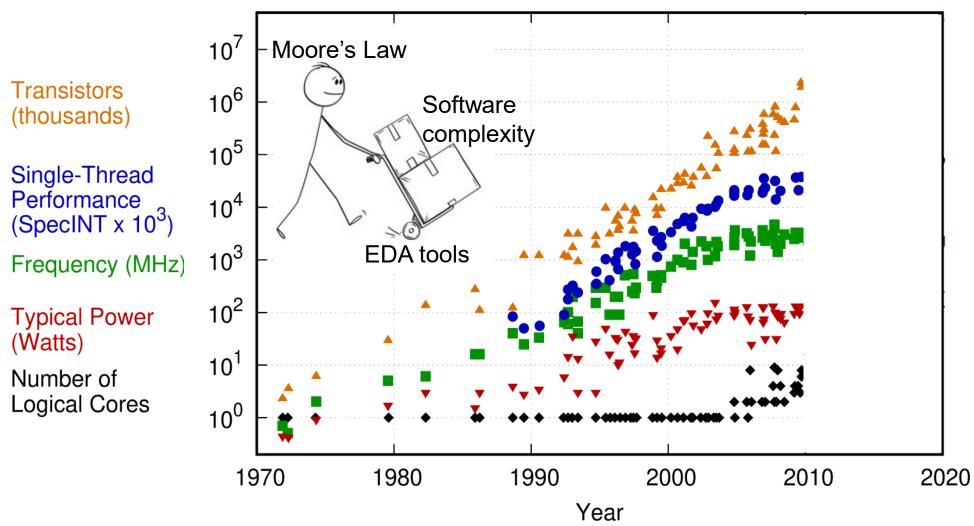


The Role of Machine Learning (ML) in Electronic Design Automation (EDA)

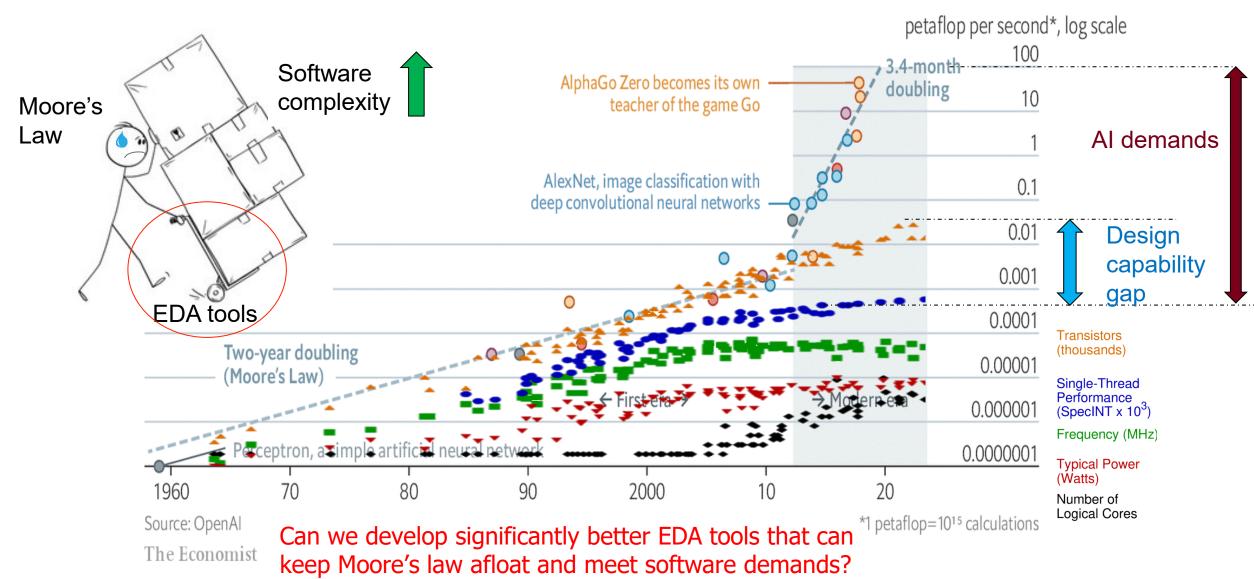
Vidya A. Chhabria
Electrical and Computer Engineering
Arizona State University (ASU)
8/9/2024

Moore's Law and the Role of Electronic Design Automation (EDA)



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

Advent of AI and its Demands from Hardware



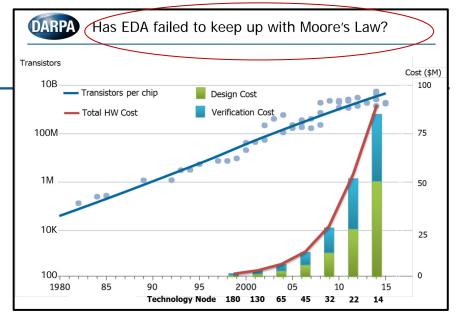
Challenges in IC Design and EDA

- Scale: The problem of "N" in EDA
- **Time-to-market:** Computationally expensive EDA tools
- Productivity: Sub-optimal automated solutions require tremendous manual intervention for high-quality
- Cost: Design dollar costs, risk, and expertise are barriers

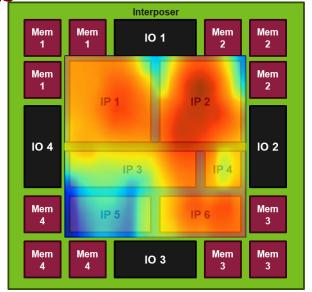
Challenges exacerbated by 2.5D and 3D chiplet-based systems

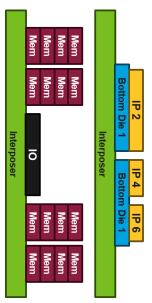
- Scaling Multiphysics solvers across chiplets is impractical
- Stacked chiplets are prone to thermal issues due to the longer path to thermal ambient
- Power delivery is critical to ensure that the chiplets do not suffer from high IR drops

Our research aims to address these challenges through **ML-based** and **open-source** EDA tools.

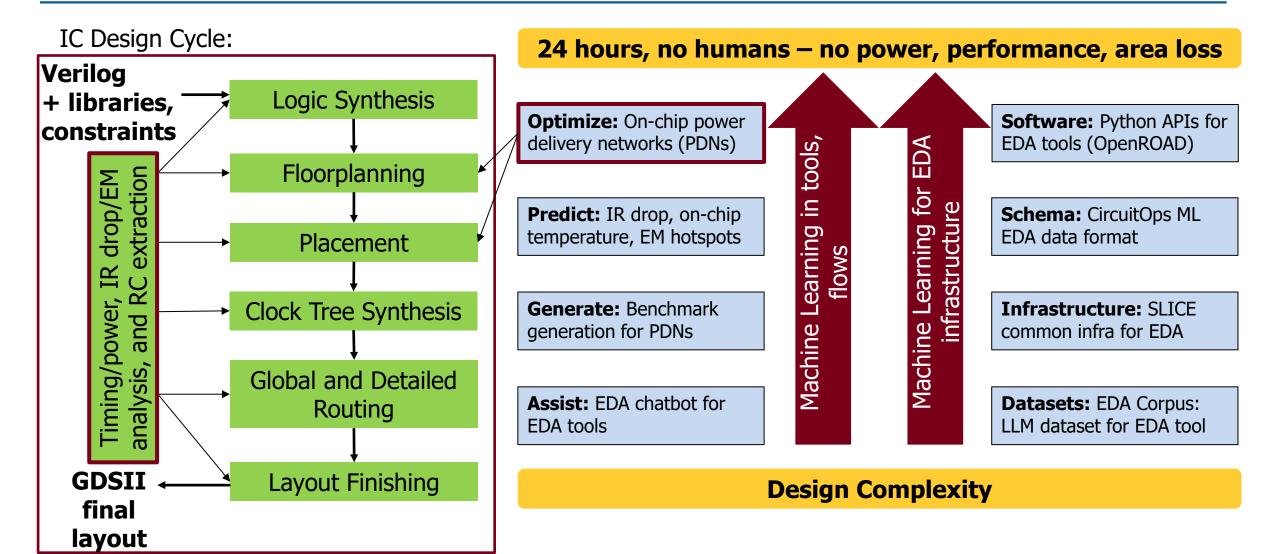


[A. Olofsson, DARPA, ISPD 2018]

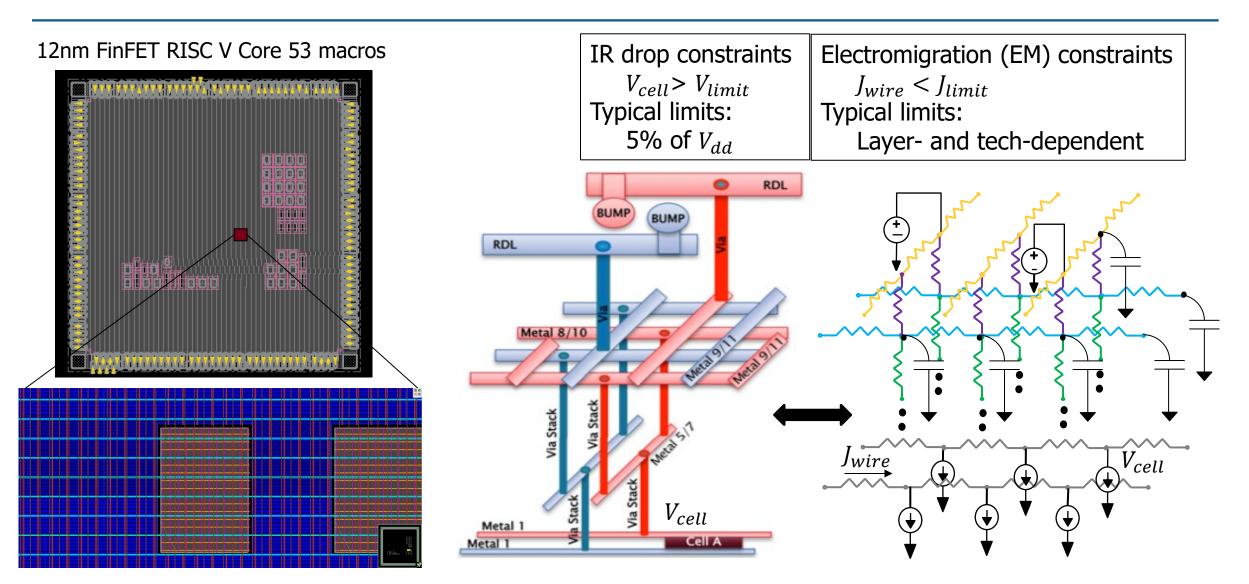




Agenda



"Optimize": On-chip Power Delivery Networks (PDNs)

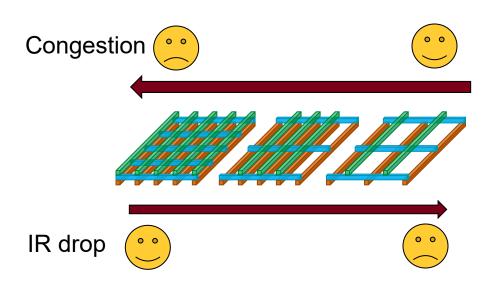


[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]

"Optimize": Conventional PDN Design and its Challenges

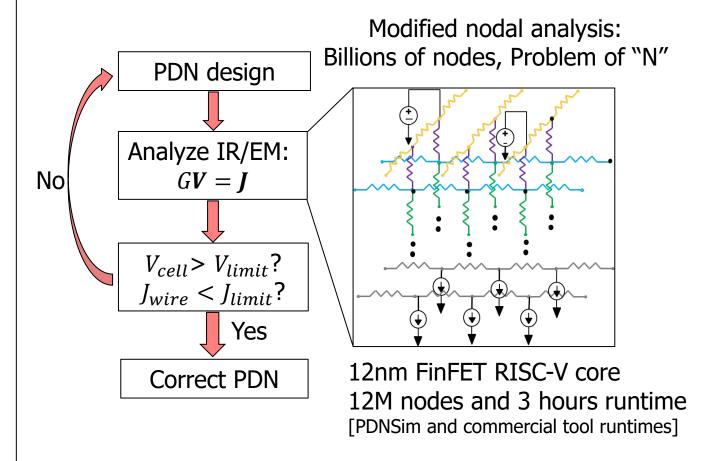
Challenge #1:

Trade off between IR drop and congestion



Challenge #2:

Optimization is iterative in nature and expensive

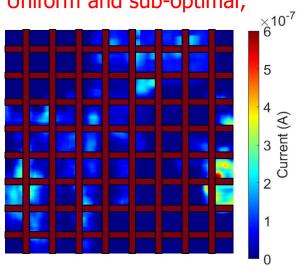


"Optimize": Conventional PDN Design and its Challenges

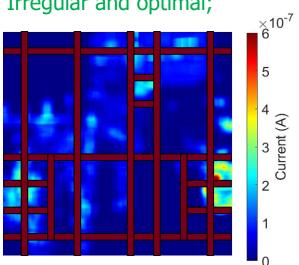
Challenge #3:

Uniform dense grids are sub-optimal and over designed

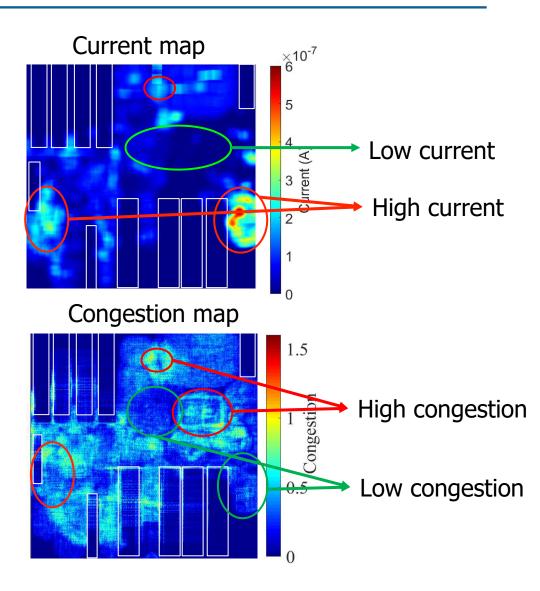
Meets IR/EM constraints; Too many routing resources; Uniform and sub-optimal;



Meets IR/EM constraints; Few routing resources; Irregular and optimal;

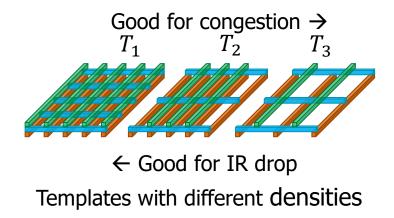


Can we automatically design an optimized power grid that meets IR/EM constraint with least routing resources?

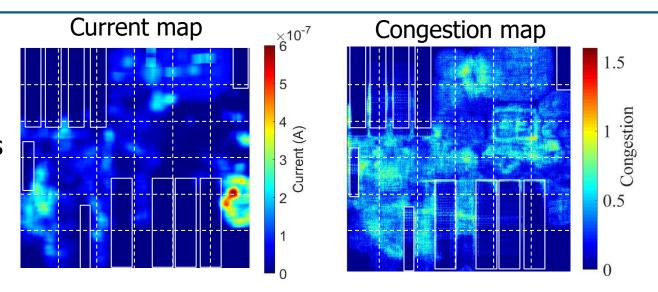


"Optimize": OpeNPDN Template-driven PDN Synthesis

- Template-based PDN synthesis
 - PDN building blocks
 - Pre-defined, PDK-specific templates
 - Piecewise regular PDN
 - Must be stitchable



"Which template goes where?"



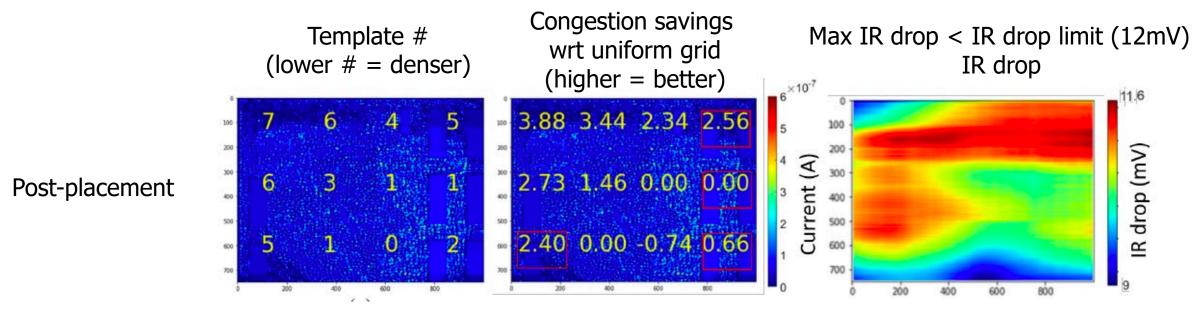
3 templates per region: $3^{36} = 1.5e17$

ML can help

EDA-world problem to ML-world problem mapping:

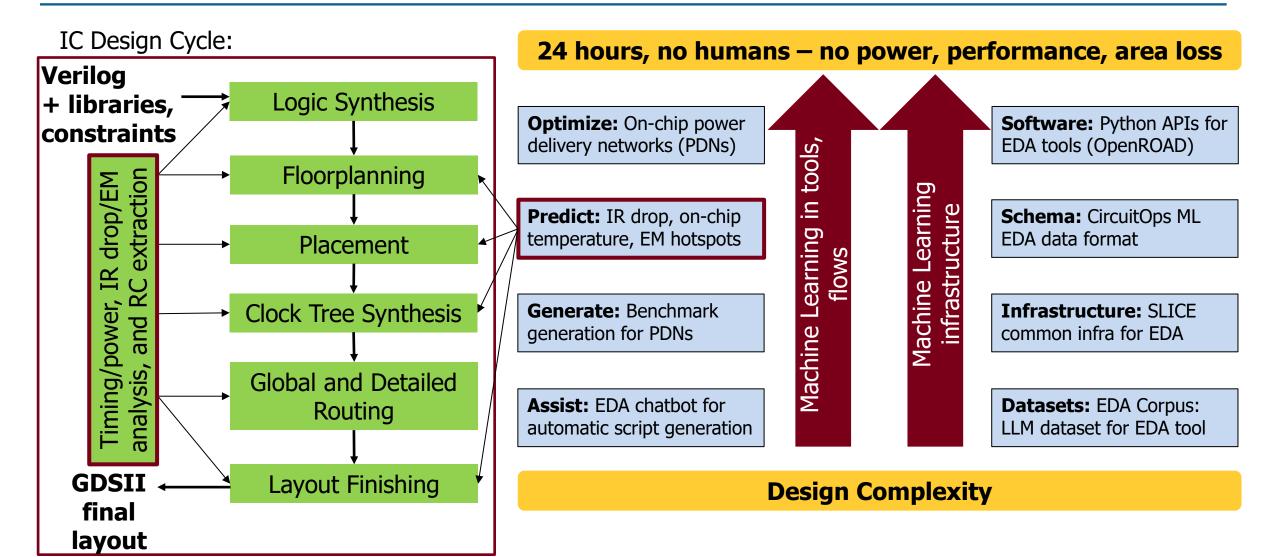
- Features: Images or distribution of current and congestion in the regions
- Class: Template ID
- CNNs: Image classification

"Optimize": Template-driven PDN Synthesis Results



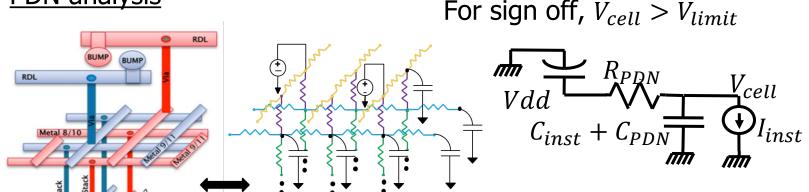
Evaluated on 12LP, 65LP, designs with \sim 50K – \sim 500K cells. Execution time: < 3m, dominated by feature extraction

Agenda



"Predict": Thermal and Power Delivery Network (PDN) Analysis

PDN analysis



Solution in steady state:

$$GV = J$$

System of equations with **billions** of variables!

Thermal analysis

Heat flow:

$$C\frac{\partial T}{\partial t} = K(x, y, z) \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + P(x, y, z, t) \right)$$

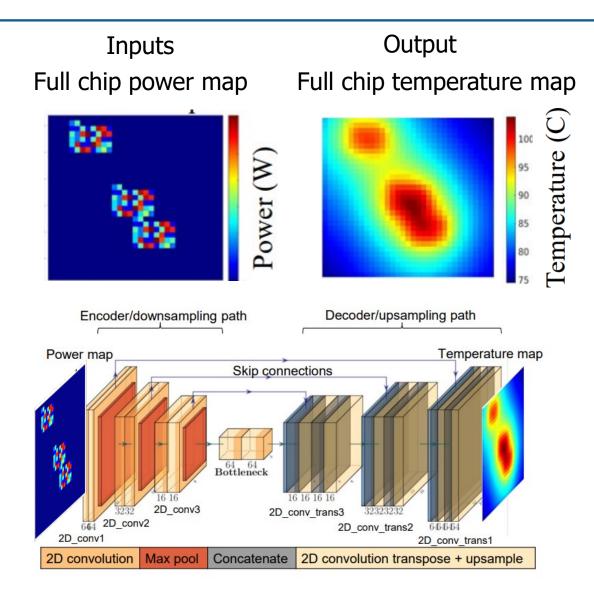
Computationally expensive with hours of runtime on industrial size designs



"Predict": Thermal and IR drop analysis

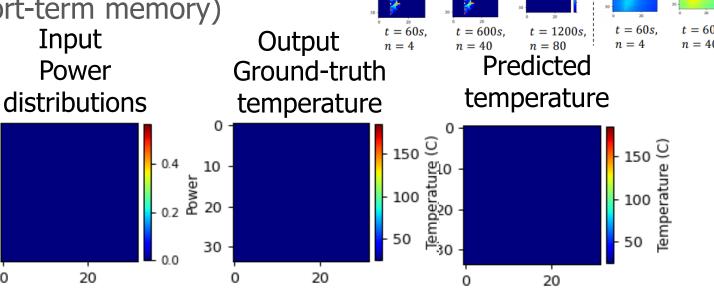
- Static thermal analysis:
 - Input: Power map
 - Output: Temperature map

- Image-to-image translation task
 - U-Nets
 - Chip-size independent
 - Transferable across different designs in the same technology



"Predict": Thermal and IR drop analysis

- Transient thermal analysis:
 - Conventionally: Numerical integration
 - Input: Sequence of power maps
 - Output: Sequence of temperature maps
- Sequence-to-sequence translation task
 - LSTMs (Long short-term memory)



Encoder

2D convolution

Max pool

2D convolution

ConvLSTM - ConvLSTM

Decoder

2D convolution

2D convolution

ConvLSTM

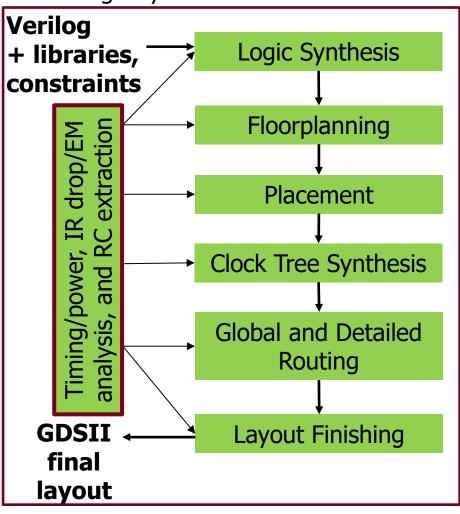
ConvLSTM - ConvLSTM

Hours of runtime down to few milliseconds!

[Chhabria et al., "Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks" ASP-DAC'21]

Agenda

IC Design Cycle:



24 hours, no humans – no power, performance, area loss

Optimize: On-chip power delivery networks (PDNs)

Predict: IR drop, on-chip temperature, EM hotspots

Generate: Benchmark generation for PDNs

Assist: EDA chatbot for automatic script generation

Machine Learning in tools, flows

Machine Learning infrastructure

Software: Python APIs for EDA tools (OpenROAD)

Schema: CircuitOps ML EDA data format

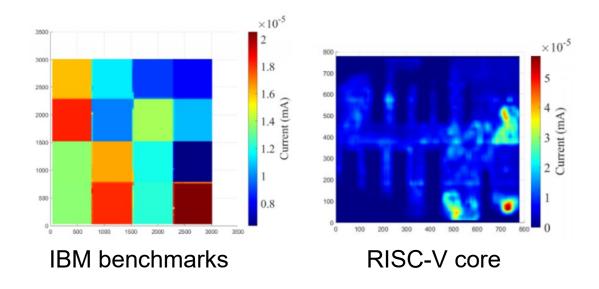
Infrastructure: SLICE common infra for EDA

Datasets: EDA Corpus: LLM dataset for EDA tool

Design Complexity

"Generate": Power delivery network (PDN) benchmarks

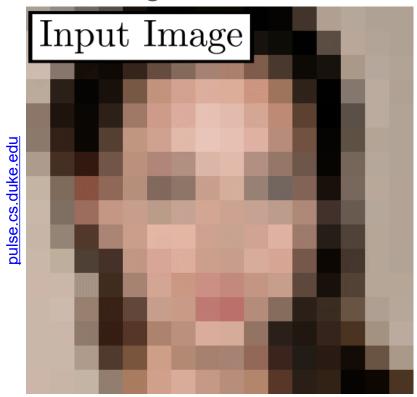
- Why are chip datasets and benchmarks so hard to find?
 - Technology and design intellectual property
 - Rapidly changing technologies with scaling
 - Requires laborious volunteer effort



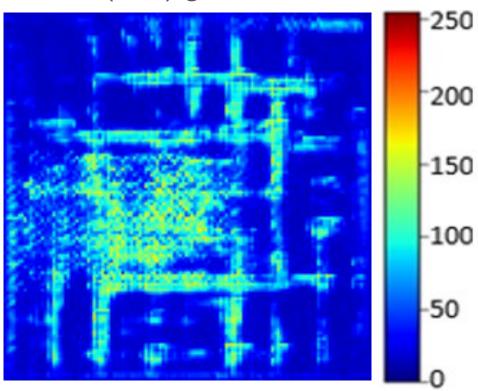
Criteria	Existing benchmarks	Wish list	
Technology	× 180 nm	✓ Portable	
Realistic	× Unrealistic	✓ Correlated to real circuits	
IR drop	× 10-40% of VDD	✓ 0.5-5% of VDD	
Diversity	× Limited diversity	✓ Large diversity	
#Count	× <10	√ >1000	
IP protection	✓ Yes	✓ Yes	

"Generate": Synthetic PDN Data Generation

GANs for synthetic image data generation

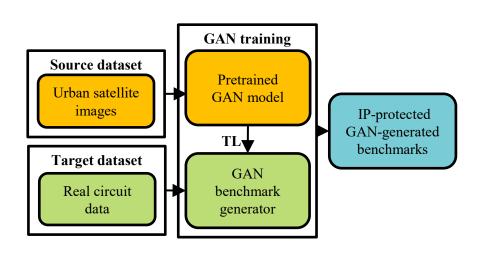


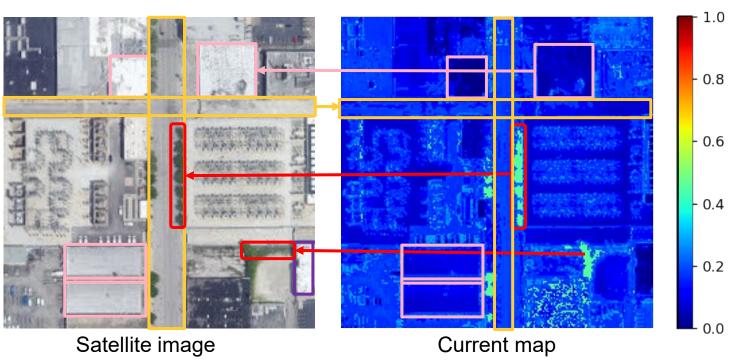
BeGAN for synthetic current map (CM) generation



[Chhabria, Kunal, Zabihi, Sapatnekar, "BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology," ICCAD'21]

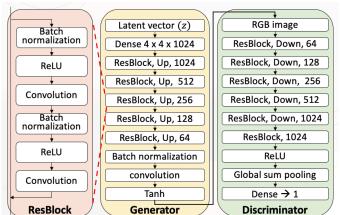
"Generate": Transfer Learning Framework



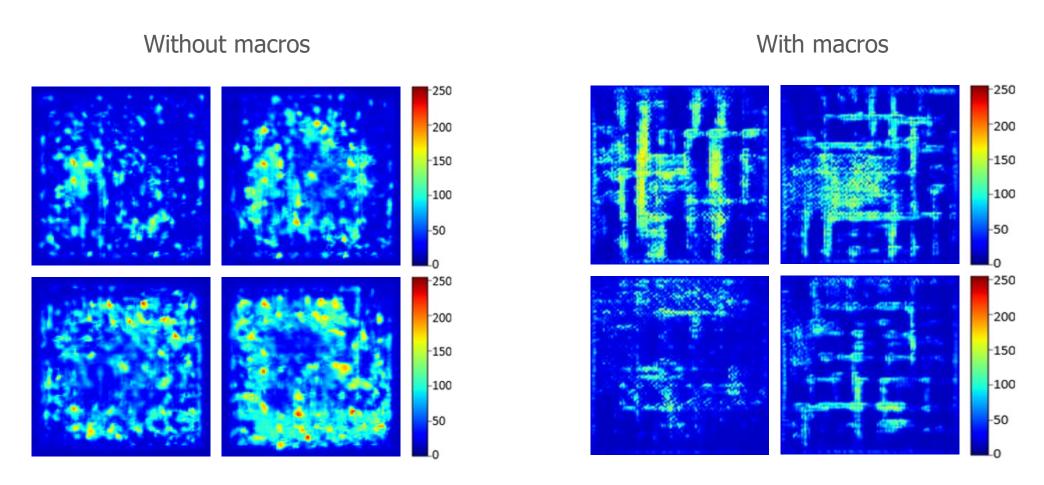


SNGAN

- Easy to adapt for training
- 90M trainable parameters
- Image size of 128x128 pixels



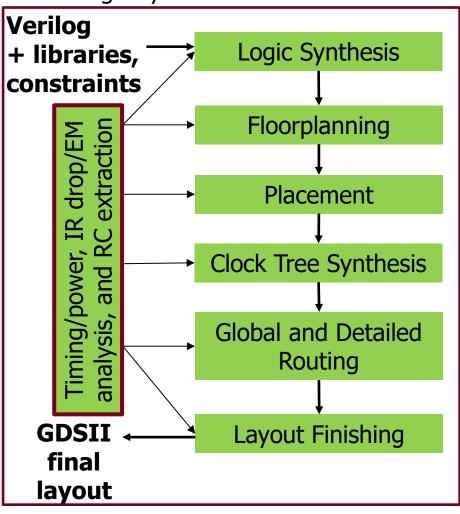
"Generate": Large number of generated CM images



Generated current maps have features similar to the original current maps

Agenda

IC Design Cycle:



24 hours, no humans – no power, performance, area loss

tools,

Machine

Optimize: On-chip power delivery networks (PDNs)

Predict: IR drop, on-chip temperature, EM hotspots

Generate: Benchmark generation for PDNs

Assist: EDA chatbot for automatic script generation

Learning infrastructure Learning flows Machine

Software: Python APIs for EDA tools (OpenROAD)

Schema: CircuitOps ML **EDA** data format

Infrastructure: SLICE common infra for EDA

Datasets: EDA Corpus: LLM dataset for EDA tool

Design Complexity

EDA tools and LLMs: EDA Corpus

- EDA Corpus: A Large Language Model Dataset for Enhanced Interaction with OpenROAD https://github.com/OpenROAD-Assistant/EDA-Corpus
- Over 1500 datapoints of prompt-response pairs including prompt-scripts and question-answers.
- Examples:

Prompt:

Give me the sample code to get a list of all the output pins of instances in a design using OpenROAD Python API.

Response:

```
# Get the current design block from the OpenROAD database
block = ord.get_db_block()
# Retrieve all instances present in the design block
insts = block.getInsts()
output_pins = []
# Iterate over each instance in the design block
for inst in insts:
 # Retrieve the pins of the instance
 pins = inst.getITerms()
   # Iterate over each pin of the instance
   for pin in pins:
      # Check if the pin is an output signal
     if pin.isOutputSignal():
        # Append the output pin to the list
        output_pins.append(pin)
return output_pins
```

B.-Y. Wu, U. Sharma et. al., EDA Corpus, LAD'24 [Arizona State University and New York University]

Prompt:

What is PDNGEN?

Response:

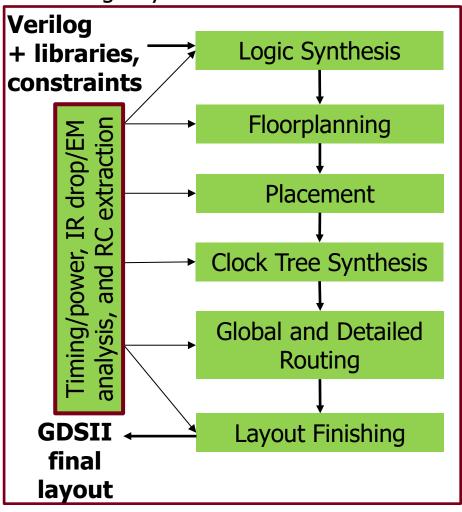
The PDNGEN module (pdn) in OpenROAD aims to simplify the process of adding a power grid into a floorplan. A user can specify a small set of power grid policies to be applied to the design, such as the layers to use, stripe width, and spacing, and then pdn will generate the actual metal straps. Power grid policies can be defined over both the standard cell area and areas occupied by macros.

Model	Prompt-script		Question-answer		
Model	True	False	True	Partial	False
ChatGPT3.5	0	50	4	17	9
ChatGPT4	3	47	6	17	7
ChatGPT3.5 fine-tuned with prompt-script	22	28	_	_	_
ChatGPT3.5 fine-tuned with question-answer	_	_	26	3	1

Fine-tuning ChatGPT3.5 with EDA Corpus

Agenda

IC Design Cycle:

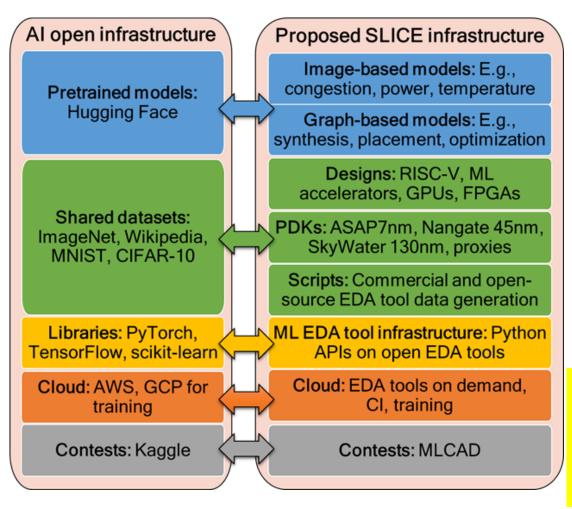


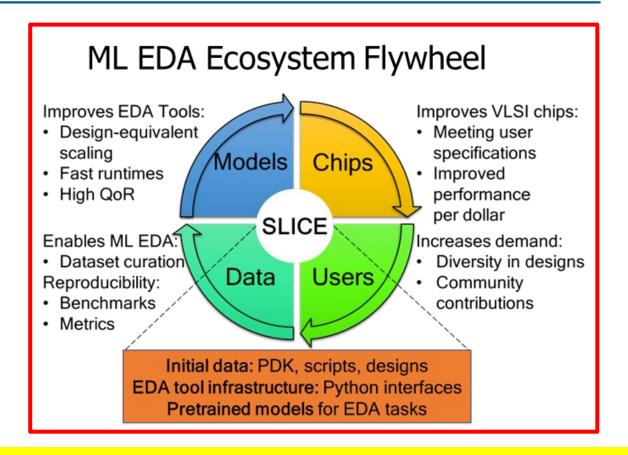
24 hours, no humans – no power, performance, area loss

Optimize: On-chip power **Software:** Python APIs for delivery networks (PDNs) tools, EDA tools (OpenROAD) Learning \subseteq infrastructure **Predict:** IR drop, on-chip **Schema:** CircuitOps ML Learning temperature, EM hotspots EDA data format flows Machine **Infrastructure:** SLICE **Generate:** Benchmark generation for PDNs Machine common infra for EDA **Assist:** EDA chatbot for **Datasets:** EDA Corpus: automatic script generation LLM dataset for EDA tool

Design Complexity

Learning from the ML Community





Prof. Jiang Hu, Texas A&M University. MLCAD 2023 invited talk

<u>SLICE website</u>: Serving as a one-stop shop for ML EDA infrastructure with pointers to datasets, EDA tool flows, contests, and proxy PDKs.

See also: March 2023 NSF Workshop on Shared Infrastructure for Machine Learning EDA

An ML for Chip Design Playground https://github.com/NVlabs/CircuitOps

OpenROAD (CircuitOps graph creation using OpenROAD DB APIs RTL to GDS flow:

Logic Synthesis

Floorplanning

Placement

Clock Tree Synthesis

Global and Detailed Routing

Layout Finishing

Python

Interface/interpreter

Verilog

+ libraries,

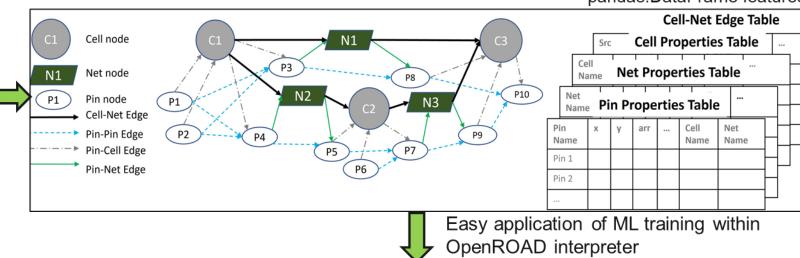
constraints

GDSII final

layout

CircuitOps: ML-friendly data representation format within OpenROAD

pandas.DataFrame features



ML inference will be supported by callbacks from CircuitOps/ML algorithm to OpenROAD

ML Model Prediction Environment: Timing update and reward estimation Congestion Congestion Congestion Prediction Model Map Prediction Node Features **DRC Violations DRC Violation** ORC Violation Action: Gate Sizing / Vt assignment Prediction Prediction Model GNN-RL Action: Buffering / Load isolation IR Drop IR Drop Prediction **Prediction Model** Environment: Timing update Net Delay **Net Delays** Prediction **Prediction Model** $s \rightarrow a, s \rightarrow b, s \rightarrow c$

ML/RL algorithms integrated within OpenROAD

CircuitOps and OpenROAD: Unleashing ML EDA for Research and Education

> Andrew B. Kahng, UCSD Vidya A. Chhabria, ASU Bing-Yue Wu, ASU

OVIDIA

Conclusion

Challenges in EDA

- Scale: The problem of "N" in EDA
- Time-to-market: Computationally expensive EDA tools
- Productivity: Sub-optimal automated solutions require tremendous manual intervention for high-quality
- **Cost:** Design dollar costs, risk, and expertise are barriers to entry

ML enables:

- Fast turn-around times due to fast analysis and prediction
- High QoR due to fast optimizations and takes out guesswork from IC design

Open-source:

 Publicly available easy to use tools and benchmarks that reduce barriers to entry

24 hours, no humans – no power, performance, area loss

Optimize: On-chip power delivery networks (PDNs)

Predict: IR drop, on-chip temperature, EM hotspots

Generate: Benchmark generation for PDNs

Assist: EDA chatbot for automatic script generation

Machine Learning in tools, flows Machine Learning infrastructure **Software:** Python APIs for EDA tools (OpenROAD)

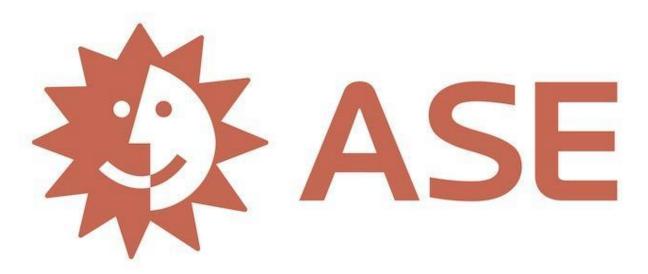
Schema: CircuitOps ML EDA data format

Infrastructure: SLICE infrastructure for EDA

Datasets: EDA Corpus: LLM dataset for EDA tool

Design Complexity

Thank you to our sponsors!



ASE is enabling the heterogeneous integration and chiplets era through VIPack™ while delivering sustainable advanced packaging innovations for...

AI | HPC | Data Center | Automotive | 6G | IoT | and more.

COPYRIGHT NOTICE

This presentation in this publication was presented at the **AI for Semiconductors** (June 12-13, 2024). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org

