< MEPTEC

'\ [Hfor Semiconductors

20

The Role of Machine Learning (ML) in
Electronic Design Automation (EDA)

Vidya A. Chhabria
Electrical and Computer Engineering

Arizona State University (ASU)
8/9/2024

University

Arizona State



Moore’s Law and the Role of Electronic Design Automation (EDA)
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Advent of Al and its Demands from Hardware
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DARPA @A failed to keep up with Moore's Lawm

Transistors

Challenges in IC Design and EDA

Cost ($M)
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« Scale: The problem of "N” in EDA
« Time-to-market: Computationally expensive EDA tools -

* Productivity: Sub-optimal automated solutions require
tremendous manual intervention for high-quality

« Cost: Design dollar costs, risk, and expertise are barriers wso s 0 w5 oo o5 do 15

Technology Node 180 130 65 45 32 22 14

50

[A. Olofsson, DARPA, ISPD 2018]

Challenges exacerbated by 2.5D and 3D chiplet-based systems
» Scaling Multiphysics solvers across chiplets is impractical

» Stacked chiplets are prone to thermal issues due to the longer
path to thermal ambient

« Power delivery is critical to ensure that the chiplets do not suffer
from high IR drops

Our research aims to address these challenges through ML-based
and open-source EDA tools.
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“"Optimize”: On-chip Power Delivery Networks (PDNSs)

12nm FIinFET RISC V Core 53 macros IR drop constraints | Electromigration (EM) constraints
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[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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“"Optimize”: Conventional PDN Design and its Challenges

« Challenge #1:
Trade off between IR drop and congestion

Congestion

[Chhabria et al., PDNSim: Static IR/EM analysis, OpenROAD Project]

No

Challenge #2:

Optimization is iterative in nature and expensive

PDN design

|

GV =]

Analyze IR/EM:

]

Vcell> Vlimit?
]wire < ]limit?

@ Yes

Correct PDN

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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Modified nodal analysis:
Billions of nodes, Problem of “N”

)

0*0*43

® ® 7 @

12nm FinFET RISC-V core

12M nodes and 3 hours runtime
[PDNSim and commercial tool runtimes]
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“"Optimize”: Conventional PDN Design and its Challenges

- Challenge #3: Current map T
Uniform dense grids are sub-optimal and over designed I I6
5
Meets IR/EM constraints; Meets IR/EM constraints;
Too many routing resources; Few routing resources; - 4 — | ow current
Uniform and sub-optimal; ) Irregular and optimal; : I B
g x10° E .
° : s =—=—= High current
| |
:
1 4 .
< 0
(35 Congestion ma
3 V
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High congestion

ongestip

Can we automatically design an optimized power grid that meets

1
IR/EM constraint with least routing resources? - Low congestion

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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“"Optimize”: OpeNPDN Template-driven PDN Synthesis

Current map <107
 PDN building blocks _____ .

« Pre-defined, PDK-specific templates .
 Piecewise regular PDN _ , .....
« Must be stitchable 4L

Good for congestion >
T3

y 3 templates per region: 33¢ = 1.5e17
ML can help

¢ Good for IR d EDA-world problem to ML-world problem mapping:
90 _Or o « Features: Images or distribution of current and
Templates with different densities congestion in the regions
« Class: Template ID
 CNNs: Image classification

« Template-based PDN synthesis

« “Which template goes where?”

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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“Optimize”: Template-driven PDN Synthesis Results

Congestion savings .
wrt uniform grid Max IR drop < IR drop limit (12mV)
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Evaluated on 12LP, 65LP, designs with ~50K — ~500K cells. Execution time: < 3m, dominated by feature extraction

https://github.com/The-OpenROAD-Project/OpeNPDN
[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21] ST,
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https://github.com/The-OpenROAD-Project/OpeNPDN
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"Predict”: Thermal and Power Delivery Network (PDN) Analysis

PDN analysis

For sign off, V..;; > Viimit

Solution in steady state:
GV =]

System of equations with
billions of variables!

Thermal analysis

Heat flow:
LT O°T 0T 0T 5
ot - Ky D\ gat gt TPz

Computationally expensive with hours of runtime on industrial size designs
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“Predict”: Thermal and IR drop analysis

Inputs Output

* Static thermal analysis: Full chip power map Full chip temperature map

 Input: Power map

—
@,
. 100 =
e QOutput: Temperature map I : l o
95
| L, S
]
85 <y
80 E
75 ﬁ
Encoden‘dowrl"lsamp[ing path Decoder,-'upslampling path
Temperature map

Power map

Skip connections

« Image-to-image translation task
* U-Nets
 Chip-size independent

 Transferable across different designs |7
in the same technology 20_coni e o0

| 2D convolution 2D convolution transpose + upsample ‘

eiconductors m
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16 16 16 16
2D_conv_trans3d  J25Z4232

[Chhabria et al., “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks” ASP-DAC’21]
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“Predict”: Thermal and IR drop analysis

Encoder Decoder

Transient thermal analysis: Convt51 [ ConvL51v {f ConvisTv ||| ComvLsTM |
- Conventionally: Numerical integration £l $ ﬁ o m
 Input: Sequence of power maps |
« Output: Sequence of temperature maps

¥
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Hours of runtime down to few milliseconds!
[Chhabria et al., “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks” ASP-DAC’21]
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“Generate”: Power delivery network (PDN) benchmarks

« Why are chip datasets and benchmarks so hard to find?
« Technology and design intellectual property
« Rapidly changing technologies with scaling
» Requires laborious volunteer effort Criteria Existing Wish list

benchmarks

0" Technology ~ x 180 nm v’ Portable
) Realistic x Unrealistic v' Correlated to real
g circuits
IR drop x 10-40% of VDD v 0.5-5% of VDD
Diversity x Limited diversity v' Large diversity
IBM benchmarks RISC-V core #Count x <10 v >1000
IP protection v Yes v Yes

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology,” ICCAD’21]
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“Generate”: Synthetic PDN Data Generation

GANs for synthetic image data BeGAN for synthetic current map
generation (CM) generation

nput Image

I 250
200

: 150

_ 100
50
0

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology,” ICCAD’21]
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http://pulse.cs.duke.edu/

“Generate”; Transfer Learning Framework

GAN training
Source dataset
Pretrained
Urban satellite GAN model
images IP-protected e T e = T
TL‘ GAN-generated E. 4L. . oL
benchmarks F TR e
Target dataset ] ; L =
GAN e, A
Real circuit benchmark _ EI__ ;..-':u j:,b-_ ﬁ:: ,.u 1
data generator A, : ;

Satellite image

« SNGAN
— Easy to adapt for training
— 90M trainable parameters

— Image size of 128x128 pixels

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable
GAN-based Methodology,” ICCAD’21]
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“Generate”: Large number of generated CM images

Without macros With macros

Generated current maps have features similar to the original current maps

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable
GAN-based Methodology,” ICCAD’21]
20

https://github.com/UMN-EDA/BeGAN-benchmarks
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https://github.com/UMN-EDA/BeGAN-benchmarks
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EDA tools and LLMs: EDA Corpus

Prompt:
Give me the sample code to get a list of all the output pins of instances in a design
using OpenROAD Python API.

Response:
# Get the current design block from the OpenROAD database
block = ord.get_db_block()
# Retrieve all dinstances present in the design block
insts = block.getInsts()
output_pins = []
# Iterate over each instance in the design block
for dnst in dnsts:
# Retrieve the pins of the dinstance
pins = inst.getITerms()
# Iterate over each pin of the dinstance
for pin in pins:
# Check if the pin is an output signal
if pin.isOutputSignal():
# Append the output pin to the list
output_pins.append(pin)
return output_pins

Response:

The PDNGEN module (pdn) in OpenROAD aims to simplify the process of
adding a power grid into a floorplan. A user can specify a small set of power grid
policies to be applied to the design, such as the layers to use, stripe width, and
spacing, and then pdn will generate the actual metal straps. Power grid policies
can be defined over both the standard cell area and areas occupied by macros.

B.-Y. Wu, U. Sharma et. al., EDA Corpus, LAD’24
[Arizona State University and New York University]

EDA Corpus: A Large Language Model Dataset for Enhanced Interaction with OpenROAD
https://github.com/OpenROAD-Assistant/EDA-Corpus

Over 1500 datapoints of prompt-response pairs including prompt-scripts and question-answers.
- Examples:

Prompt:
What is PDNGEN?

Prompt-script

Question-answer

Model True | False || True | Partial | False
ChatGPT3.5 0 50 -+ 17 9
ChatGPT4 3 47 6 17 7
Ch.at(“.Fl‘Zr.S ﬁne-.tuned D 28 B B B
with prompt-script
ChatGPT3.5 fine-tuned B B 2% 3 |
with question-answer - ;

Fine-tuning ChatGPT3.5 with EDA Corpus



https://github.com/OpenROAD-Assistant/EDA-Corpus
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SLICE: Shared Infrastructure for ML EDA

Learning from the ML Community

[ Al open infrastmcture\ / Proposed SLICE infrastructureﬁ

Libraries: PyTorch, ML EDA tool infrastructure: Python
TensorFlow, scikit-learn APls on open EDA tools

ML EDA Ecosystem Flywheel

Improves VLSI chips:
* Meeting user

Improves EDA Tools:
» Design-equivalent

scaling specifications
+ Fast runtimes * Improved
+ High QoR P — performance
er dollar
LICE P
Enables ML EDA Increases demand:

« Dataset curation\ \ + Diversity in designs
Reproducibility: |
« Benchmarks -~

. &
*+ Metrics 7
o

contributions
-,

.
Y
s

Prof. Jiang Hu, Texas A&M University. MLCAD 2023 invited talk
SLICE website: Serving as a one-stop shop for ML EDA infrastructure with

pointers to datasets, EDA tool flows, contests, and proxy PDKs.

See also: March 2023 NSF Workshop on Shared Infrastructure for Machine
Learning EDA



https://slice-ml-eda.github.io/
https://sites.google.com/view/ml4eda/home
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An ML for Chlp DESIgn Playground https://github.com/NVlabs/CircuitOps

CircuitOps: ML-friendly data representation format within OpenROAD

pandas.DataFrame features

Cell-Net Edge Table

sc Cell Properties Table | ..

T T T T T T
Cell —

name Net Properties Table

1 I I I I
Net

name Pin Properties Table

Pin X y arr | .. Cell Net

Name Name | Name 1 | |
Pin1 —

Pin 2 |

Easy application of ML training within
OpenROAD interpreter

5
openrOAD ()
CircuitOps graph creation using OpenROAD DB APIs
Verilog Cell node
+ libraries, RTL to GDS flow:
constraints — Logic Synthesis 1 Net node S LN
l = SV Vel
5 Floorplanning —1 g s Cell-Net Edge ’ \
g | § ------- »> Pin-Pin Edge ’-——-fi @
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: ) - Gy
E 1 : g Pin-Net Edge @
- —  Clock Tree Synthesis — @
= =
*g ; B
£ Global and Detailed | @
= Routing b=
| o
o} Fe .
GDS" ﬁna La\/out FInIShIng 1, - r..\;r‘::‘t;;rr ML Model Prediction
layout Congestion Congestion Congestion
Prediction Prediction Model Map

ML inference will be supported by callbacks from
CircuitOps/ML algorithm to OpenROAD

DRC Vielation
Prediction :

CircuitOps and OpenROAD: Unleashing
ML EDA for Research and Education

Andrew B. Kahng, UCSD
Vidya A. Chhabria, ASU
Bing-Yue Wu, ASU

Z, quownarm § mmﬁu PrecisionfiSLINLITY

mmmmmm

New state

DRC Violation 4 DRC Violations | | =

Prediction Model Map
IR Drop IR Drop IR Drop
Prediction Prediction Model Map
Net Delay Net Delay 5 Net Delays
Prediction Prediction Model s—a, s—b, s—c¢

State

ﬁ | Action: Gate Sizing / Vi assignment |

GNN-RL
Agent

u lAc(iun: Buffering / Load isolation |

T

. e o T > ";" B
i e i
: 4 =
(xw-ﬁnp lop . -
Neighborhood Neighborhood |
Environment: Timing update I~
and reward estimation ke

New state

ML/RL algorithms integrated within OpenROAD

ASP-DAC 2024 Tutorial #8
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https://github.com/NVlabs/CircuitOps

Conclusion

- Challenges in EDA
« Scale: The problem of "N” in EDA

« Time-to-market: Computationally
expensive EDA tools

* Productivity: Sub-optimal
automated solutions require
tremendous manual intervention for

high-quality
« Cost: Design dollar costs, risk, and
expertise are barriers to entry
« ML enables:

e Fast turn-around times due to fast
analysis and prediction

* High QoR due to fast optimizations and
takes out guesswork from IC design

« Open-source:

* Publicly available easy to use tools and
benchmarks that reduce barriers to entry
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