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Moore’s Law and the Role of Electronic Design Automation (EDA)
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Can we develop significantly better EDA tools that can 
keep Moore’s law afloat and meet software demands?

Advent of AI and its Demands from Hardware 

Design 
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gap

AI demands
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Challenges in IC Design and EDA

[A. Olofsson, DARPA, ISPD 2018]

Our research aims to address these challenges through ML-based 
and open-source EDA tools.

• Scale: The problem of “N” in EDA
• Time-to-market:  Computationally expensive EDA tools
• Productivity: Sub-optimal automated solutions require 

tremendous manual intervention for high-quality
• Cost: Design dollar costs, risk, and expertise are barriers

Challenges exacerbated by 2.5D and 3D chiplet-based systems
• Scaling Multiphysics solvers across chiplets is impractical
• Stacked chiplets are prone to thermal issues due to the longer 

path to thermal ambient
• Power delivery is critical to ensure that the chiplets do not suffer 

from high IR drops
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“Optimize”: On-chip Power Delivery Networks (PDNs)

12nm FinFET RISC V Core 53 macros

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐽𝐽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

IR drop constraints
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐> 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Typical limits:
5% of 𝑉𝑉𝑑𝑑𝑑𝑑

Electromigration (EM) constraints
𝐽𝐽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 < 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Typical limits:
Layer- and tech-dependent
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• Challenge #2: 
     Optimization is iterative in nature and expensive

“Optimize”: Conventional PDN Design and its Challenges

Analyze IR/EM:
𝐺𝐺𝐺𝐺 = 𝑱𝑱

PDN design

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐> 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙?
𝐽𝐽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 < 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙?

No

Correct PDN

Yes

[Chhabria et al., PDNSim: Static IR/EM analysis, OpenROAD Project]

Modified nodal analysis: 
Billions of nodes, Problem of “N”

12nm FinFET RISC-V core
12M nodes and 3 hours runtime 
[PDNSim and commercial tool runtimes]

• Challenge #1:
     Trade off between IR drop and congestion

Congestion

IR drop

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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“Optimize”: Conventional PDN Design and its Challenges

 

• Challenge #3:
     Uniform dense grids are sub-optimal and over designed

Low current

High current

Current map

High congestion

Low congestion

Congestion map

Meets IR/EM constraints; 
Too many routing resources;
Uniform and sub-optimal; 

Meets IR/EM constraints; 
Few routing resources;
Irregular and optimal;

Can we automatically design an optimized power grid that meets 
IR/EM constraint with least routing resources?

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]
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• Template-based PDN synthesis
• PDN building blocks
• Pre-defined, PDK-specific templates
• Piecewise regular PDN 
• Must be stitchable

• “Which template goes where?”

“Optimize”: OpeNPDN Template-driven PDN Synthesis

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3

Templates with different densities

Good for congestion 

 Good for IR drop

3 templates per region: 336 = 1.5e17

EDA-world problem to ML-world problem mapping:
• Features: Images or distribution of current and 

congestion in the regions
• Class: Template ID
• CNNs: Image classification

ML can help

Current map Congestion map

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]



10

“Optimize”: Template-driven PDN Synthesis Results

Post-placement

Template #
(lower # = denser)

Congestion savings 
wrt uniform grid
(higher = better)

Evaluated on 12LP, 65LP, designs with ~50K – ~500K cells. Execution time:  < 3m, dominated by feature extraction

https://github.com/The-OpenROAD-Project/OpeNPDN 

Max IR drop < IR drop limit (12mV)
IR drop

[Chhabria et al., "OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis," TCAD21]

https://github.com/The-OpenROAD-Project/OpeNPDN
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“Predict”: Thermal and Power Delivery Network (PDN) Analysis

𝑉𝑉𝑉𝑉𝑉𝑉
𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

For sign off, 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝐺𝐺𝐺𝐺 = 𝐽𝐽

System of equations with 
billions of variables!

PDN analysis

Solution in steady state:

Computationally expensive with hours of runtime on industrial size designs

Heat flow:

𝐶𝐶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

+ 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡

Thermal analysis
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• Static thermal analysis:
• Input: Power map 
• Output: Temperature map

“Predict”: Thermal and IR drop analysis

[Chhabria et al., “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks” ASP-DAC’21]

Full chip power map
Inputs Output

Full chip temperature map

• Image-to-image translation task
• U-Nets
• Chip-size independent
• Transferable across different designs 

in the same technology
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Hours of runtime down to few milliseconds!

Predicted 
temperature

• Transient thermal analysis: 
• Conventionally: Numerical integration
• Input: Sequence of power maps 
• Output: Sequence of temperature maps

“Predict”: Thermal and IR drop analysis

Input Output
Power 

distributions
Ground-truth 
temperature

• Sequence-to-sequence translation task
• LSTMs (Long short-term memory)

[Chhabria et al., “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder Networks” ASP-DAC’21]
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“Generate”: Power delivery network (PDN) benchmarks

• Why are chip datasets and benchmarks so hard to find?
• Technology and design intellectual property
• Rapidly changing technologies with scaling
• Requires laborious volunteer effort

IBM benchmarks

Criteria Existing 
benchmarks 

Wish list

Technology × 180 nm  Portable

Realistic × Unrealistic  Correlated to real 
circuits

IR drop × 10-40% of VDD  0.5-5% of VDD

Diversity × Limited diversity  Large diversity

#Count × <10  >1000
IP protection  Yes  Yes

RISC-V core

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology,” ICCAD’21]
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“Generate”: Synthetic PDN Data Generation

GANs for synthetic image data 
generation

BeGAN for synthetic current map 
(CM) generation

pu
ls

e.
cs

.d
uk

e.
ed

u

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable GAN-based Methodology,” ICCAD’21]

http://pulse.cs.duke.edu/
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“Generate”: Transfer Learning Framework

GAN training

Pretrained 
GAN model

GAN 
benchmark 
generator

Source dataset

IP-protected 
GAN-generated 

benchmarks

Urban satellite 
images

Target dataset

Real circuit 
data

TL

Satellite image Current map

• SNGAN
– Easy to adapt for training
– 90M trainable parameters
– Image size of 128x128 pixels

[Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable 
GAN-based Methodology,” ICCAD’21]
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“Generate”: Large number of generated CM images

Without macros With macros

Generated current maps have features similar to the original current maps

https://github.com/UMN-EDA/BeGAN-benchmarks [Chhabria, Kunal, Zabihi, Sapatnekar, “BeGAN: Power Grid Benchmark Generation Using a Process-portable 
GAN-based Methodology,” ICCAD’21]

https://github.com/UMN-EDA/BeGAN-benchmarks
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• EDA Corpus: A Large Language Model Dataset for Enhanced Interaction with OpenROAD 
https://github.com/OpenROAD-Assistant/EDA-Corpus 

• Over 1500 datapoints of prompt-response pairs including prompt-scripts and question-answers.
• Examples: 

EDA tools and LLMs: EDA Corpus

B.-Y. Wu, U. Sharma et. al., EDA Corpus, LAD’24
[Arizona State University and New York University]

Fine-tuning ChatGPT3.5 with EDA Corpus

https://github.com/OpenROAD-Assistant/EDA-Corpus
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SLICE: Shared Infrastructure for ML EDA

Prof. Jiang Hu, Texas A&M University. MLCAD 2023 invited talk
SLICE website: Serving as a one-stop shop for ML EDA infrastructure with 
pointers to datasets, EDA tool flows, contests, and proxy PDKs. 
See also: March 2023 NSF Workshop on Shared Infrastructure for Machine 
Learning EDA

https://slice-ml-eda.github.io/
https://sites.google.com/view/ml4eda/home
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An ML for Chip Design Playground https://github.com/NVlabs/CircuitOps 

ASP-DAC 2024 Tutorial #8

https://github.com/NVlabs/CircuitOps
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Conclusion

• Challenges in EDA
• Scale: The problem of “N” in EDA
• Time-to-market:  Computationally 

expensive EDA tools
• Productivity: Sub-optimal 

automated solutions require 
tremendous manual intervention for 
high-quality

• Cost: Design dollar costs, risk, and 
expertise are barriers to entry

• ML enables: 
• Fast turn-around times due to fast 

analysis and prediction
• High QoR due to fast optimizations and 

takes out guesswork from IC design
• Open-source: 

• Publicly available easy to use tools and 
benchmarks that reduce barriers to entry

24 hours, no humans – no power, performance, area loss

Design Complexity

M
ac

hi
ne

 L
ea

rn
in

g 
in

 to
ol

s,
 

flo
w

s

Predict: IR drop, on-chip 
temperature, EM hotspots

Generate: Benchmark 
generation for PDNs

Optimize: On-chip power 
delivery networks (PDNs)

Assist: EDA chatbot for 
automatic script generation 

M
ac

hi
ne

 L
ea

rn
in

g 
in

fra
st

ru
ct

ur
e Schema: CircuitOps ML 

EDA data format

Infrastructure: SLICE 
infrastructure for EDA

Software: Python APIs for 
EDA tools (OpenROAD)

Datasets: EDA Corpus: 
LLM dataset for EDA tool



Thank you to our sponsors!





COPYRIGHT NOTICE
This presentation in this publication was presented at the AI for Semiconductors (June 12-13, 2024). The 
content reflects the opinion of the author(s) and their respective companies. The inclusion of 
presentations in this publication does not constitute an endorsement by MEPTEC or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of 
the authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org


	The Role of Machine Learning (ML) in Electronic Design Automation (EDA)
	Moore’s Law and the Role of Electronic Design Automation (EDA)
	Advent of AI and its Demands from Hardware 
	Challenges in IC Design and EDA
	Agenda
	“Optimize”: On-chip Power Delivery Networks (PDNs)
	“Optimize”: Conventional PDN Design and its Challenges
	“Optimize”: Conventional PDN Design and its Challenges
	“Optimize”: OpeNPDN Template-driven PDN Synthesis
	“Optimize”: Template-driven PDN Synthesis Results
	Agenda
	“Predict”: Thermal and Power Delivery Network (PDN) Analysis
	“Predict”: Thermal and IR drop analysis
	“Predict”: Thermal and IR drop analysis
	Agenda
	“Generate”: Power delivery network (PDN) benchmarks
	“Generate”: Synthetic PDN Data Generation
	“Generate”: Transfer Learning Framework
	“Generate”: Large number of generated CM images
	Agenda
	EDA tools and LLMs: EDA Corpus
	Agenda
	SLICE: Shared Infrastructure for ML EDA
	An ML for Chip Design Playground https://github.com/NVlabs/CircuitOps 
	Conclusion
	adadcopy.pdf
	ads
	copy and ad
	Slide for Ira Feldman June 2024
	Slide Number 1

	copyright.pptx



